Crossing species boundaries in regenerative neuroscience with rat-mouse brain chimeras.

Lab Anim (NY)

Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.

Published: July 2024

Understanding the inherent complexity of organogenesis and addressing the persistent shortage of organ donors remain paramount scientific challenges. Recent advances in chimeric blastocyst technology offer promising solutions. Two new pioneering studies have successfully generated functional rat–mouse brain chimeras, providing novel insights into brain development and potential regenerative therapies. However, several technical and ethical hurdles persist.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216989PMC
http://dx.doi.org/10.1038/s41684-024-01394-3DOI Listing

Publication Analysis

Top Keywords

brain chimeras
8
crossing species
4
species boundaries
4
boundaries regenerative
4
regenerative neuroscience
4
neuroscience rat-mouse
4
rat-mouse brain
4
chimeras understanding
4
understanding inherent
4
inherent complexity
4

Similar Publications

Investigating the intrinsic top-down dynamics of deep generative models.

Sci Rep

January 2025

Department of General Psychology and Padova Neuroscience Center, University of Padova, Padova, Italy.

Hierarchical generative models can produce data samples based on the statistical structure of their training distribution. This capability can be linked to current theories in computational neuroscience, which propose that spontaneous brain activity at rest is the manifestation of top-down dynamics of generative models detached from action-perception cycles. A popular class of hierarchical generative models is that of Deep Belief Networks (DBNs), which are energy-based deep learning architectures that can learn multiple levels of representations in a completely unsupervised way exploiting Hebbian-like learning mechanisms.

View Article and Find Full Text PDF

Indoleamine 2,3-dioxygenase 1 (IDO1) is a potently immunosuppressive protein that inhibits antitumor immunity through both tryptophan metabolism and non-enzymatic functions. Pharmacological therapies targeting IDO1 enzyme activity have generally failed to improve the overall survival of patients with cancer. Developing new therapeutic agents that are capable of neutralizing both enzyme-and non-enzyme-derived immunosuppressive IDO1 effects is therefore of high interest.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) biases Langerhans cell (LC) Ag presentation to CD4 T cells towards Th17-type immunity through actions on endothelial cells (ECs). We now report further evidence that IL-6 signalling at responding T cells mediates this effect. This CGRP effect was absent with ECs from IL-6 KO mice.

View Article and Find Full Text PDF

Degrading Mutant IDH1 Employing a PROTAC-Based Approach Impairs STAT3 Activation.

Arch Biochem Biophys

January 2025

Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India. Electronic address:

Heterozygous mutations in IDH1 (isocitrate dehydrogenase 1) are found in most grade II and III brain tumors. A slew of mutant IDH1 inhibitors were identified soon after the discovery of IDH1 mutations in brain tumors. But recent reports show that mutant IDH1 inhibitors reverse therapeutic vulnerabilities and activate the oncogenic transcription factor STAT3 in mutant IDH1-expressing cells.

View Article and Find Full Text PDF

Spinal cord injury (SCI) leads to permanent motor and sensory loss that is exacerbated by intraspinal inflammation and persists months to years after injury. After SCI, monocyte-derived macrophages (MDMs) infiltrate the lesion to aid in myelin-rich debris clearance. During debris clearance, MDMs adopt a proinflammatory phenotype that exacerbates neurodegeneration and hinders recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!