Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To address the measurement accuracy challenges posed by the internal flow complexity in atypical circular bend pipes with short turning sections and without extended straight pipe segments, this study designed an experimental circular "S"-shaped bent pipe with a diameter of 0.4 m and a bending angle of 135°. Numerical analysis was used to determine the stable region for velocity distribution within the experimental segment. Furthermore, a novel evaluation method based on the coefficient of variation was proposed to accurately locate the optimal position for installing thermal mass flow meters on the test cross section. Additionally, a formula for calculating the pipeline flow rate based on velocity differences was derived. This formula considers pipeline flow as the dependent variable and uses the velocity at two points in the test cross section as the independent variable. Experimental validation on a primary standard test bench demonstrated that the flow rate calculated by this method had an error controlled within 0.625% compared to the standard flow rate, thus effectively verifying the method's high accuracy and engineering applicability. This research provides a new testing methodology and practical basis for flow measurement in complex pipeline systems, offering significant guidance for research and applications in related fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11183242 | PMC |
http://dx.doi.org/10.1038/s41598-024-64978-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!