A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In-situ-formed immunotherapeutic and hemostatic dual drug-loaded nanohydrogel for preventing postoperative recurrence of hepatocellular carcinoma. | LitMetric

Hepatocellular carcinoma (HCC) is a prevalent malignancy characterized by an exceedingly high recurrence rate post-surgery, significantly impairing the prognosis of HCC patients. However, a standard in-care strategy for postoperative therapy is still lacking. Although encouraging results have been obtained in a newly published clinical trial for postoperative therapy by targeting the vascular endothelial growth factor (VEGF) and programmed death ligand 1 (anti-PD-L1), its efficacy remains constrained. Combining a hemostatic hydrogel with a nanoparticle-based drug delivery system presents an opportunity to optimize the antitumor effect. Herein, we developed a nanoplatform, termed HMSN@Sor/aP@Gel, comprising a hemostatic fibrin hydrogel and functionalized hollow mesoporous silica nanoparticles (HMSNs) loaded with sorafenib and anti-PD-L1 for locally administered targeted-immunotherapy to prevent the postoperative recurrence and metastasis of HCC. The antitumor mechanism is grounded in dual inhibition of Ras/Raf/MEK/ERK (MAPK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) pathways, synergistically complemented by PD-L1 blockade. HMSN@Sor/aP@Gel facilitates dendritic cell maturation, enhances cytotoxic T-lymphocyte infiltration, promotes the polarization of tumor-associated macrophages to M1 phenotype, induces tumor immunogenic cell death, reverses immunosuppression, and establishes immune memory to counter postoperative recurrence. Animal studies corroborate that HMSN@Sor/aP@Gel-mediated targeted immunotherapy significantly impedes primary and metastatic tumor growth and establishes immune memory to prevent recurrence post-surgery. This investigation presents a promising strategy for postoperative therapy with considerable potential for clinical translation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2024.06.030DOI Listing

Publication Analysis

Top Keywords

postoperative recurrence
12
postoperative therapy
12
hepatocellular carcinoma
8
strategy postoperative
8
establishes immune
8
immune memory
8
postoperative
6
recurrence
5
in-situ-formed immunotherapeutic
4
immunotherapeutic hemostatic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!