A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Marine copepod culture as a potential source of bioplastic-degrading microbiome: The case of poly(butylene succinate-co-adipate). | LitMetric

The poly(butylene succinate-co-adipate) (PBSA) is emerging as environmentally sustainable polyester for applications in marine environment. In this work the capacity of microbiome associated with marine plankton culture to degrade PBSA, was tested. A taxonomic and functional characterization of the microbiome associated with the copepod Acartia tonsa, reared in controlled conditions, was analysed by 16S rDNA metabarcoding, in newly-formed adult stages and after 7 d of incubation. A predictive functional metagenomic profile was inferred for hydrolytic activities involved in bioplastic degradation with a particular focus on PBSA. The copepod-microbiome was also characterized in newly-formed carcasses of A. tonsa, and after 7 and 33 d of incubation in the plankton culture medium. Copepod-microbiome showed hydrolytic activities at all developmental stages of the alive copepods and their carcasses, however, the evenness of the hydrolytic bacterial community significantly increased with the time of incubation in carcasses. Microbial genera, never described in association with copepods: Devosia, Kordia, Lentibacter, Methylotenera, Rheinheimera, Marinagarivorans, Paraglaciecola, Pseudophaeobacter, Gaiella, Streptomyces and Kribbella sps., were retrieved. Kribbella sp. showed carboxylesterase activity and Streptomyces sp. showed carboxylesterase, triacylglycerol lipase and cutinase activities, that might be involved in PBSA degradation. A culturomic approach, adopted to isolate bacterial specimen from carcasses, led to the isolation of the bacterial strain, Vibrio sp. 01 tested for the capacity to promote the hydrolysis of the ester bonds. Granules of PBSA, incubated 82 d at 20 °C with Vibrio sp. 01, were characterized by scanning electron microscopy, infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry, showing fractures compared to the control sample, and hydrolysis of ester bonds. These preliminary results are encouraging for further investigation on the ability of the microbiome associated with plankton to biodegrade polyesters, such as PBSA, and increasing knowledge on microorganisms involved in bioplastic degradation in marine environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.142603DOI Listing

Publication Analysis

Top Keywords

microbiome associated
12
polybutylene succinate-co-adipate
8
marine environment
8
plankton culture
8
hydrolytic activities
8
activities involved
8
involved bioplastic
8
bioplastic degradation
8
hydrolysis ester
8
ester bonds
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!