Chiral α-Aminophosphonates as Ligands in Copper-Catalyzed Asymmetric Oxidative Coupling of 2-Naphthols.

Org Lett

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu 730000, China.

Published: June 2024

Chiral α-aminophosphonates with adjacent carbon and phosphonate stereogenic centers have been employed as ligands in the copper-catalyzed oxidative coupling of 2-naphthols, resulting in the production of chiral BINOLs in favorable yields and moderate to good enantiomeric excess. This represents the first application of chiral P-based ligands to enable such a transformation. The synthesis of these chiral α-aminophosphonate ligands offers a significant advantage over approaches that typically necessitate elaborate synthetic processes for chiral ligand production.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.4c01582DOI Listing

Publication Analysis

Top Keywords

chiral α-aminophosphonates
8
ligands copper-catalyzed
8
oxidative coupling
8
coupling 2-naphthols
8
chiral
6
ligands
4
α-aminophosphonates ligands
4
copper-catalyzed asymmetric
4
asymmetric oxidative
4
2-naphthols chiral
4

Similar Publications

The embellishing of the macrocycle core with sulfur substituents of varied sterical requirements changes the structural dynamics of chiral, triangular polyimines. Despite their formal high symmetry, these compounds adopt diverse conformations, in which the macrocycle core represents a non-changeable unit. DFT calculations reveal that the mutual arrangement of sulfur-containing substituents is controlled mainly by sterical interactions.

View Article and Find Full Text PDF

Catalytic asymmetric C-N cross-coupling towards boron-stereogenic 3-amino-BODIPYs.

Nat Commun

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China.

3-Amino boron dipyrromethenes (BODIPYs) are a versatile class of fluorophores widely utilized in live cell imaging, photodynamic therapy, and fluorescent materials science. Despite the growing demand for optically active BODIPYs, the synthesis of chiral 3-amino-BODIPYs, particularly the catalytic asymmetric version, remains a challenge. Herein, we report the synthesis of boron-stereogenic 3-amino-BODIPYs via a palladium-catalyzed desymmetric C-N cross-coupling of prochiral 3,5-dihalogen-BODIPYs.

View Article and Find Full Text PDF

Periostin-mediated NOTCH1 activation between tumor cells and HSCs crosstalk promotes liver metastasis of small cell lung cancer.

J Exp Clin Cancer Res

January 2025

National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Background: Metastasis is the primary cause of mortality in small cell lung cancer (SCLC), with the liver being a predominant site for distal metastasis. Despite this clinical significance, mechanisms underlying the interaction between SCLC and liver microenvironment, fostering metastasis, remain unclear.

Methods: SCLC patient tissue array, bioinformatics analysis were performed to demonstrate the role of periostin (POSTN) in SCLC progression, metastasis, and prognosis.

View Article and Find Full Text PDF

Reported herein is the synthesis of a novel chiral dicarboxylic ligand for Mn(II) and the application of the Mn complex to the highly enantio- and position-selective epoxidation of C═C under mild conditions, even with polyolefinic substrates. A stereomechanistic basis for asymmetric induction is suggested.

View Article and Find Full Text PDF

Turning the band alignment of carbon dots for visible-light-driven enzymatic asymmetric reduction of aromatic ketone.

Int J Biol Macromol

January 2025

Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:

Keto reductases are crucial NAD(P)H-dependent enzymes used for the enantioselective synthesis of alcohols from prochiral ketones. Typically, the NADPH cofactor is regenerated through a second enzyme and/or substrate. However, photocatalytic cofactor regeneration using water as a sacrificial electron and hydrogen donor presents a promising alternative, albeit a challenging one.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!