Exposure to the radon gas within a building can result in an increased risk of lung cancer. To minimise the health risk, indoor radon concentrations can be reduced using well-established mitigation methods. The performance of various radon reduction methods, their combination as well as other factors that can impact the efficiency of radon mitigation, were analysed using data collected from approximately 2800 dwellings that had installed radon mitigation techniques during the period 2007-2017. As demonstrated previously (Hodgson 2011), active methods are the most effective at reducing high concentrations of radon to below the Action and Target Levels (200 Bq mand 100 Bq mrespectively). Reduction factors of up to 5.5 using single active methods and 8.3 using a combination of active methods were estimated in this study. For indoor radon levels greater than 1 000 Bq m, the Active Sump remained the most efficient technique, with the Active Underfloor Ventilation being the second most effective method. Passive methods alone or in combination with other passive methods offered moderate reductions at high radon concentration. Of the passive methods, Underfloor Ventilation was found to have the highest performance with a reduction factor of 1.8. The conclusions of this study should be used to update guidance for stakeholders including householders, contractors, radon awareness campaigns and the UKradon.org website.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6498/ad58e8 | DOI Listing |
Medicina (Kaunas)
December 2024
Interdisciplinary Department of Medicine, University of Bari, Piazza G. Cesare, 11, 70124 Bari, Italy.
: Radon is a known risk factor for lung cancer, and residential radon exposure is the leading cause of lung cancer in never smokers; however, in Italy, there is still a lack of public awareness regarding the risk caused by residential radon exposure. In this mortality study, which was carried out in an Italian Apulian town (Locorotondo) of the Bari province, we aimed to analyze lung cancer mortality and all-cause mortality in a population highly exposed to radon. : The study period was 1998-2021.
View Article and Find Full Text PDFGac Sanit
January 2025
Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela (A Coruña), Spain; Health Research Institute of Santiago de Compostela, Santiago de Compostela (A Coruña), Spain.
Objective: To evaluate radon mitigation frequency and possible determinants for mitigation among employers in Spain, before the new regulation came into force. We also aimed to assess the reasons for not mitigating radon.
Method: In this cross-sectional study, participants were systematically identified from all employers in Spain who had previously measured occupational radon through the Galician Radon Laboratory from 2015 until 2022.
Sci Total Environ
January 2025
Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
Lake eutrophication driven by excessive nutrient inputs has become a global issue, but the potential impact of lacustrine groundwater discharge (LGD) as a nutrient source on lake eutrophication remains largely unknown. This study assessed the contribution of LGD-derived nutrient loads and revealed their potential impact on lake eutrophication in Taihu Lake, a typical large shallow and eutrophic lake in China, based on the segmented radon mass balance model and nutrient data. The total LGD flux was estimated to be 6.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Department of Environmental Health, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa.
This review aimed to explore advances in radon detection methods, emphasizing cost-effectiveness and accessible techniques such as CDs, DVDs, and glass-based detectors. In this review, we compared traditional methods like alpha track detectors and continuous radon monitors with emerging innovations that leverage polycarbonate material and IoT-integrated systems. Our evaluation of the synthesis suggests that CDs and DVDs provide scalable solutions for long-term radon monitoring, while glass-based detectors like CR-39 offer high sensitivity for epidemiological studies.
View Article and Find Full Text PDFBiomed Environ Sci
November 2024
Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China.
Objective: We aimed to analyze the current indoor radon level and estimate the population risk of radon-induced lung cancer in urban areas of China.
Methods: Using the passive monitoring method, a new survey on indoor radon concentrations was conducted in 2,875 dwellings across 31 provincial capital cities in Chinese mainland from 2018 to 2023. The attributable risk of lung cancer induced by indoor radon exposure was estimated based on the risk assessment model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!