Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Skin lesions are considered a public health problem, compromising patients' quality of life. This work aimed to evaluate the effects of fraxetin and monnieriside A on Cultured L929 Fibroblasts through the scratch assay. Supernatants and cells from the fibroblast culture treated with the compounds were used to evaluate essential markers of the tissue repair process (IGF-1, VEGF, IL-8, IL-10, FGF-2, COL1A2, COL4A, PDGF) using ELISA and qRT-PCR. The results showed that fraxetin and MOA were non-cytotoxic and could stimulate cellular migration. Fraxetin induced IGF-1, VEGF, IL-8, and IL-10 expression, while MOA induced FGF2, COL1A2, and IL-10 expression. Altogether, these results set provides evidence that fraxetin and MOA have healing potential for tissue repair, paving the way for studies and clinical trials to validate the results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14786419.2024.2368268 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!