Rising atmospheric carbon dioxide levels are impacting global temperatures, ecological systems, and human societies. Natural carbon sequestration through the conservation of soil and native ecosystems may slow or reduce the amount of CO2 in the atmosphere, and thus slow or mitigate the rate of global warming. Most of the research investigating carbon sequestration in natural systems occurs in forested ecosystems, however rare ecosystems such as coastal plain marshes and wet-mesic sand prairie collectively may serve as significant carbon sinks. Our objectives were to measure and assess the importance of carbon sequestration in three rare ecosystems (oak-pine barrens, coastal plain marsh, and wet-mesic sand prairie) in western Lower Michigan. We measured carbon in standing vegetation, dead organic matter, and soils within each ecosystem and adjacent encroaching forested areas. Driven by tree carbon, total carbon stocks in encroaching areas were greater than in intact rare ecosystems. Soil organic carbon was greater in all intact ecosystems, though only significantly so in coastal plain marsh. Principal components analysis explained 72% of the variation and revealed differences between intact ecosystems and their encroaching areas. Linear models using the ratio of red to green light reflectance successfully predicted SOC in intact coastal plain marsh and wet-mesic sand prairie. Our results infer the importance of these rare ecosystems in sequestering carbon in soils and support the need to establish federal or state management practices for the conservation of these systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11182492PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305394PLOS

Publication Analysis

Top Keywords

rare ecosystems
20
coastal plain
16
carbon sequestration
12
wet-mesic sand
12
sand prairie
12
plain marsh
12
carbon
11
ecosystems
9
western lower
8
lower michigan
8

Similar Publications

Lignin, as the abundant carbon polymer, is essential for carbon cycle and biorefinery. Microorganisms interact to form communities for lignin biodegradation, yet it is a challenge to understand such complex interactions. Here, we develop a coastal lignin-degrading bacterial consortium (LD), through "top-down" enrichment.

View Article and Find Full Text PDF

As a potential corridor connecting Southwest Asia with western and northern Europe, the Armenian Highlands and southern Caucasus hold great potential for increasing our understanding of Upper Paleolithic behavioral and cultural variability. However, given the dearth of Upper Paleolithic sites, we lack the data necessary to answer basic questions regarding the timing and nature of the Upper Paleolithic in this region. Solak-1 is an open-air site located along the upper Hrazdan Valley (1635 m above sea level) in central Armenia.

View Article and Find Full Text PDF

Peficitinib suppresses diffuse-type tenosynovial giant cell tumor by targeting TYK2 and JAK/STAT signaling.

Sci China Life Sci

January 2025

Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.

Diffuse-type tenosynovial giant cell tumor (dTGCT) is a destructive but rare benign proliferative synovial neoplasm. Although surgery is currently the main treatment modality for dTGCT, the recurrence risk is up to 50%. Therefore, there is a great need for effective drugs against dTGCT with minor side effects.

View Article and Find Full Text PDF

The fish intestine is a complex ecosystem where microbial communities are dynamic and influenced by various factors. Preservation conditions during field collection can introduce biases affecting the microbiota amplified during sequencing. Therefore, establishing effective, standardized methods for sampling fish intestinal microbiota is crucial.

View Article and Find Full Text PDF

Extensive Admixture Among Karst-Obligate Salamanders Reveals Evidence of Recent Divergence and Gene Exchange Through Aquifers.

Ecol Evol

January 2025

United States Fish and Wildlife Service, Texas Fish and Wildlife Conservation Office San Marcos Texas USA.

Karst ecosystems often contain extraordinary biodiversity, but the complex underground aquifers of karst regions present challenges for assessing and conserving stygobiont diversity and investigating their evolutionary history. We examined the karst-obligate salamanders of the species complex in the Edwards Plateau region of central Texas using population genomics data to address questions about population connectivity and the potential for gene exchange within the underlying aquifer system. The species complex has historically been divided into three nominal species, but their status, and spatial extent of species ranges, have remained uncertain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!