We investigate the direct and indirect effects of micro- and nano-kraft lignin, kL and NkL, respectively, at a quite low amount of 0.5 wt%, in poly(lactic acid) (PLA)-based composites. These renewable composites were prepared two routes, either simple melt compounding or reactive extrusion. The materials are selected and prepared using targeted methods in order to vary two variables, , the size of kL and the synthetic method, while maintaining constant polymer chain lengths, L-/D-lactide isomer ratio and filler amounts. The direct/indirect effects were respectively investigated in the amorphous/semicrystalline state, as crystallinity plays in general a dominant role in polymers. The investigation involves structural, thermal and molecular mobility aspects. Non-extensive polymer-lignin interactions were recorded here, whereas the presence of the fillers led to both enhancements and suppressions of properties, , glass transition, crystallization, melting temperatures, The local and segmental molecular dynamics map of the said systems was constructed and is shown here for the first time, demonstrating both expected and unexpected trends. An interesting discrepancy between the trends in the calorimetric measurement against the dielectric is revealed, providing indications for 'dynamical heterogeneities' in the composites as compared to neat PLA. The reactive extrusion as compared to compounding-based systems was found to exhibit stronger effects on crystallizability and mobility, most, probably due to the severe enhancement of the chains' diffusion. In general, the effects are more pronounced when employing nano-lignin compared to micro-lignin, which is the expected beneficial behaviour of nanocomposites conventional composites. Interestingly, the variety of these effects can be easily manipulated by the proper selection of the preparation method and/or the thermal treatment under relatively mild conditions. The latter capability is actually desirable for processing and targeted applications and is proved here, once again, as an advantage of biobased polyesters such as PLA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4sm00622d | DOI Listing |
Carbohydr Polym
March 2025
Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:
Chitosan (CS) based sponge shows important potential applications in adsorption, filtration, sensing, etc., which often requires good deformation-recovery ability that is usually achieved under the help of silane elastomers. Herein, a simple but innovative strategy was proposed that only bamboo activated carbon (BAC) was employed as the reinforcer to construct highly elastic phosphorylated chitosan (P-CS) sponge with through-hole structure like layer-support by freeze drying.
View Article and Find Full Text PDFChemSusChem
January 2025
Guangxi Normal University, Chemistry and Pharmaceutical Sciences, CHINA.
Layered double hydroxides (LDHs), which resemble hydrotalcite, are a type of materials with cationic layers and exchangeable interlayer anions. They have drawn lots of curiosity as a high-temperature CO2 adsorbent because of its quick desorption/sorption kinetics and renewability. Due to its extensive divalent or trivalent cationic metals, high anion exchange property, memory effect, adjustable behavior, bio-friendliness, easy to prepare and relatively low cost, the LDHs-based materials are becoming increasingly popular for photocatalytic CO2 reduction reaction (CO2RR).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.
Glass system of 45BO-20ZnO-30BaO-5X, (where X represents CaO, MgO, AlO, TiO, CuO and FeO) in mole percentage was investigated for gamma ray radiation shielding experimentally. Six glass composites were fabricated and the density was measured experimentally and the BZBCa glass sample has the least density with a value of 3.932 g cm and this is due to the presence of CaO in it, and the sample BZBFe has the highest density with a value of 4.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Metallurgical and Materials Enginerring, Colorado School of Mines, Golden, Colorado 80401, United States.
The sizes of the basins of attraction on the potential energy surface are helpful indicators in determining the experimental synthesizability of metastable phases. In principle, these basins can be controlled with changes in thermodynamic conditions such as composition, pressure, and surface energy. Herein, we use random structure sampling to computationally study how alloying smoothly perturbs basin of attraction sizes.
View Article and Find Full Text PDFCurr Res Microb Sci
December 2024
Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun 248005, Uttarakhand, India.
The challenges of pollution and agro-industrial waste management have led to the development of bioconversion techniques to transform these wastes into valuable products. This has increased the focus on the sustainable and cost-efficient production of biosurfactants from agro-industrial waste. Hence, the present study investigates the production of sophorolipid biosurfactants using the yeast strain IIPL32 under submerged fermentation, employing sugarcane bagasse hydrolysate-a renewable, low-cost agro-industrial waste as the feedstock.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!