Nanoscale semiconductors with isolated spin impurities have been touted as promising materials for their potential use at the intersection of quantum, spin, and information technologies. Electron paramagnetic resonance (EPR) studies of spins in semiconducting carbon nanotubes have overwhelmingly focused on spins more strongly localized by sp3-type lattice defects. However, the creation of such impurities is irreversible and requires specific reactions to generate them. Shallow charge impurities, on the other hand, are more readily and widely produced by simple redox chemistry, but have not yet been investigated for their spin properties. Here, we use EPR to study p-doped (6,5) semiconducting single-wall carbon nanotubes (s-SWNTs) and elucidate the role of impurity-impurity interactions in conjunction with exchange and correlation effects for the spin behavior of this material. A quantitative comparison of the EPR signals with phenomenological modeling combined with configuration interaction electronic structure calculations of impurity pairs shows that orbital overlap, combined with exchange and correlation effects, causes the EPR signal to disappear due to spin entanglement for doping levels corresponding to impurity spacings of 14 nm (at 30 K). This transition is predicted to shift to higher doping levels with increasing temperature and to lower levels with increasing screening, providing an opportunity for improved spin control in doped s-SWNTs.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0207502DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
12
spin entanglement
8
exchange correlation
8
correlation effects
8
doping levels
8
levels increasing
8
spin
6
epr
5
onset spin
4
entanglement doped
4

Similar Publications

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions.

View Article and Find Full Text PDF

In this research, poly(lactic acid) (PLA) nanocomposites with multi-walled carbon nanotubes (MWCNT) were produced by extrusion, injection, and compression molding, focusing on electromagnetic shielding. Various amounts of carbon nanotubes (MWCNTs) were tested in PLA matrix, specifically ranging from 1 to 4 parts per hundred resin (phr). The resulting nanocomposites were analyzed before and after undergoing annealing heat treatment.

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

Smart textiles provide a significant technological advancement, but their development must balance traditional textile properties with electronic features. To address this challenge, this study introduces a flexible, electrically conductive composite material that can be fabricated using a continuous bi-component extrusion process, making it ideal for sensor electrodes. The primary aim was to create a composite for the filament's core, combining multi-walled carbon nanotubes (MWCNTs), polypropylene (PP), and thermoplastic elastomer (TPE), optimised for conductivity and flexibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!