A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanically Robust Lubricating Hydrogels Beyond the Natural Cartilage as Compliant Artificial Joint Coating. | LitMetric

Mechanically Robust Lubricating Hydrogels Beyond the Natural Cartilage as Compliant Artificial Joint Coating.

Adv Sci (Weinh)

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.

Published: August 2024

Natural cartilage exhibits superior lubricity as well as an ultra-long service lifetime, which is related to its surface hydration, load-bearing, and deformation recovery feature. Until now, it is of great challenge to develop reliable cartilage lubricating materials or coatings with persistent robustness. Inspired by the unique biochemical structure and mechanics of natural cartilage, the study reports a novel cartilage-hydrogel composed of top composite lubrication layer and bottom mechanical load-bearing layer, by covalently manufacturing thick polyelectrolyte brush phase through sub-surface of tough hydrogel matrix with multi-level crystallization phase. Due to multiple network dissipation mechanisms of matrix, this hydrogel can achieve a high compression modulus of 11.8 MPa, a reversible creep recovery (creep strain: ≈2%), along with excellent anti-swelling feature in physiological medium (v/v < 5%). Using low-viscosity PBS as lubricant, this hydrogel demonstrates persistent lubricity (average COF: ≈0.027) under a high contact pressure of 2.06 MPa with encountering 100k reciprocating sliding cycles, negligible wear and a deformation recovery of collapse pit in testing area. The extraordinary lubrication performance of this hydrogel is comparable to but beyond the natural animal cartilage, and can be used as compliant coating for implantable articular material of UHMWPE to present, offering more robust lubricity than current commercial system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336983PMC
http://dx.doi.org/10.1002/advs.202401000DOI Listing

Publication Analysis

Top Keywords

natural cartilage
12
cartilage compliant
8
deformation recovery
8
cartilage
5
mechanically robust
4
robust lubricating
4
lubricating hydrogels
4
natural
4
hydrogels natural
4
compliant artificial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!