Recent advances in circularly polarized luminescence of planar chiral organic compounds.

Chem Commun (Camb)

Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.

Published: June 2024

Circularly polarized luminescence (CPL), as an important chiroptical phenomenon, can not only directly characterize excited-state structural information about chiroptical materials but also has great application prospects in 3D optical displays, information storage, biological probes, CPL lasers and so forth. Recently, chiral organic small molecules with CPL have attracted a lot of research interest because of their excellent luminescence efficiency, clear molecular structures, unique flexibility and easy functionalization. Planar chiral organic compounds make up an important class of chiral organic small molecular materials and often have rigid macrocyclic skeletons, which have important research value in the field of chiral supramolecular chemistry (, chiral self-assembly and chiral host-guest chemistry). Therefore, research into planar chiral organic compounds has become a hotspot for CPL. It is time to summarize the recent developments in CPL-active compounds based on planar chirality. In this feature article, we summarize various types of CPL-active compounds based on planar chirality. Meanwhile, we overview recent research in the field of planar chiral CPL-active compounds in terms of optoelectronic devices, asymmetric catalysis, and chiroptical sensing. Finally, we discuss their future research prospects in the field of CPL-active materials. We hope that this review will be helpful to research work related to planar chiral luminescent materials and promote the development of chiral macrocyclic chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc01698jDOI Listing

Publication Analysis

Top Keywords

planar chiral
20
chiral organic
20
organic compounds
12
cpl-active compounds
12
chiral
11
circularly polarized
8
polarized luminescence
8
organic small
8
compounds based
8
based planar
8

Similar Publications

Gold(I)-catalyzed intramolecular hydroarylation of dialkynyl(biaryl)phosphine oxides provided versatile benzo-fused phosphepine oxides. O-exo adducts were obtained as the major product, and O-endo adducts were the minor product. O-exo and O-endo indicate the position of an oxygen atom with respect to the central phosphepine framework.

View Article and Find Full Text PDF

Modular Synthesis of Planar-Chiral Cyclononenes via -Retentive Trapping of π-Allyl-Pd Dipoles.

J Am Chem Soc

January 2025

Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.

-cycloalkenes are abundant in bioactive natural products and have been used as powerful tools in chemical biology and drug discovery. However, strategies for the modular synthesis of -cycloalkenes, especially planar-chiral medium-sized ones, with high efficiency and selectivity, still remain elusive. Herein, we report a Pd-catalyzed asymmetric [7 + 2] cyclization strategy to address this challenge.

View Article and Find Full Text PDF

A C-H Arylation-Based Enantioselective Synthesis of Planar Chiral Cyclophanes.

Angew Chem Int Ed Engl

January 2025

University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, SWITZERLAND.

Despite the growing importance of planar chiral macrocyclophanes owing to their unique properties in different areas of chemistry, methods that are effective in controlling their planar chirality are restricted to certain molecular scaffolds. Herein, we report the first Pd(0)-catalyzed enantioselective intermolecular C-H arylation that induces planar chirality by installing bulky aryl groups through dynamic kinetic resolution (DKR). A computer-assisted approach allowed a fine-tuning of the structure of the employed chiral bifunctional phosphine-carboxylate ligands to achieve high enantioselectivities.

View Article and Find Full Text PDF

Planar chirality found tremendous use in many fields, such as chemistry, optics, and materials science. In particular, planar chiral [2.2]paracyclophanes (PCPs) are a type of structurally interesting and practically useful chiral compounds bearing unique electronic and photophysical properties and thus have been widely used in π-stacking polymers, organic luminescent materials, and as a valuable toolbox for developing chiral ligands or organocatalysts.

View Article and Find Full Text PDF

Optically pure monosubstituted [n]paracyclophanes are promising candidates for material synthesis, asymmetric catalysis, and drug discovery. Thus far, only a few catalytic asymmetric synthesis processes have been reported for assessing these stained atropisomers. In this study, we describe a highly enantioselective synthesis of monosubstituted [n]paracyclophanes by combining desymmetrization and kinetic resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!