The stoichiometric characteristics of leaves can reflect environmental adaptation of plants, and thus the study of the relationship between them is helpful for exploring plant adaptation strategies. In this study, taking the national second-level key protection species, , as the research object, we set up 26 plots to collect samples, and measured the content of carbon (C), nitrogen (N), phosphorus (P) and water use efficiency (WUE) of leaves. We analyzed the relationship between leaf stoichiometric characteristics and WUE, and quantified the contributions of soil, climate, and water use efficiency to the variations of leaf stoichiometry. The results showed that C, N, and P contents in the leaves were (583.99±27.93), (24.31±2.09), and (1.83±0.06) mg·g, respectively. The coefficients of variation were 4.8%, 8.6%, and 3.2%, respectively, all belonging to weak variability, indicating that foliar contents of C, N and P tended to a certain stable value. The average value of N:P was 13.3, indicating that the growth of was mainly limited by N. WUE was not correlated with leaf C content, but was significantly positively correlated with leaf N and P contents and N:P, and significantly negatively correlated with C:N and C:P, indicating that there was a linear synergistic trend between WUE and leaf nutrient content. The main factors influencing leaf C content and C:P were climatic factors, the leaf N content and N:P were mainly affected by soil factors, and the water use efficiency mainly affected leaf P content and C:N, indicating that the driving factors of different stoichiometric characteristics were different. The results could help eva-luate the habitat adaptation of desert plants, which would provide a theoretical basis for the conservation and management of .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.202404.018 | DOI Listing |
BMC Plant Biol
January 2025
Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
Background: Perilla frutescens (L.) Britt. (Lamiaceae) leaves are essential culinary and medicinal herbs, native to East Asian countries.
View Article and Find Full Text PDFSci Rep
January 2025
USDA-ARS National Peanut Research Laboratory, 1011 Forrester Dr. S.E, 39842, Dawson, GA, USA.
Cercosporidium personatum (CP) causes peanut late leaf spot (LLS) disease with 70% yield losses unless controlled by fungicides. CP grows slowly in culture, exhibiting variable phenotypes. To explain those variations, we analyzed the morphology, genomes, transcriptomes and chemical composition of three morphotypes, herein called RED, TAN, and BROWN.
View Article and Find Full Text PDFSci Rep
January 2025
College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan.
Cotton (Gossypium hirsutum L.), a crucial global fibre and oil seed crop faces diverse biotic and abiotic stresses. Among these, temperature stress strongly influences its growth, prompting adaptive physiological, biochemical, and molecular changes.
View Article and Find Full Text PDFTransgenic Res
January 2025
Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
Lignin is a crucial defense phytochemical against phytophagous insects. Cinnamoyl-CoA reductase (CCR) is a key enzyme in lignin biosynthesis. In this study, transgenic Populus davidiana × P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!