Biologically Active Micropatterns of Biomolecules and Living Matter Using Microbubble Lithography.

Small

Department of Physical Sciences, IISER Kolkata, Mohanpur, West Bengal, 741246, India.

Published: October 2024

In situ patterning of biomolecules and living organisms while retaining their biological activity is extremely challenging, primarily because such patterning typically involves thermal stresses that could be substantially higher than the physiological thermal or stress tolerance level. Top-down patterning approaches are especially prone to these issues, while bottom-up approaches suffer from a lack of control in developing defined structures and the time required for patterning. A microbubble generated and manipulated by optical tweezers (microbubble lithography) is used to self-assemble and pattern living organisms in continuous microscopic structures in real-time, where the material thus patterned remains biologically active due to their ability to withstand elevated temperatures for short exposures. Successful patterns of microorganisms (Escherichia coli, Lactococcus. lactis and the Type A influenza virus) are demonstrated, as well as reporter proteins such as green fluorescent protein (GFP) on functionalized substrates with high signal-to-noise ratio and selectivity. Together, the data presented herein may open up fascinating possibilities in rapid in situ parallelized diagnostics of multiple pathogens and bioelectronics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202401127DOI Listing

Publication Analysis

Top Keywords

biologically active
8
biomolecules living
8
microbubble lithography
8
living organisms
8
active micropatterns
4
micropatterns biomolecules
4
living matter
4
matter microbubble
4
lithography situ
4
patterning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!