Introduction: Young cervical cancer patients who require ovarian transposition usually have their ovaries moved away from the pelvic radiotherapy (RT) field before radiotherapy. The dose of ovaries during radiotherapy is closely related to the location of the ovaries. To protect ovarian function and avoid ovarian dose exceeding the limits, a safe location of transposed ovary must be determined prior to surgery.

Methods: For this purpose, we input the patient's preoperative CT into a neural network model to predict the dose distribution. Surgeons were able to quickly locate low-dose regions based on the dose distribution before surgery, thus determining the safe location of the transposed ovary. In this work, we proposed a new progressive refinement transformer model PRT-Net that can generate dose prediction at multiple scale resolutions in one forward propagation, and refine the dose prediction using prediction details from low to high resolution based on a deep supervision strategy. A multi-loss function fusion algorithm was also built to fit the prediction results under different loss dimensions. The clinical feasibility of the method was verified through an actual cases.

Results And Discussion: Therefore, using PRT-Net to predict the dose distribution by preoperative CT in cervical cancer patients can assist clinicians to perform ovarian transposition surgery and prevent patients' ovaries from exceeding the prescribed dose limit in postoperative radiotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177340PMC
http://dx.doi.org/10.3389/fonc.2024.1372424DOI Listing

Publication Analysis

Top Keywords

dose prediction
12
ovarian transposition
12
dose distribution
12
dose
9
progressive refinement
8
refinement transformer
8
cervical cancer
8
cancer patients
8
safe location
8
location transposed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!