Background And Objectives: Microbubbles (MBs) are gas or vapor-filled cavities inside liquids with sizes ranging from 2 to 3 µm. Recently, MBs have shown great promise in nanomedicine owing to their high encapsulation efficiency, targeted drug release, improved biocompatibility, and longer blood circulation. Furthermore, they are more suitable for focusing on particular body regions and are safer and non-invasive. MBs generators are used to create bubbles in fluid dynamics, chemistry, medicine, agriculture, and the environment. Drug delivery using MBs increases penetration without causing systemic toxicity. In this study, we examined whether the use of microbubbles as a local drug-delivery mechanism increases tubular penetration of endodontic medications and irrigant.
Materials And Methods: An culture was added to 38 dentin cylinders of single-rooted teeth. Samples were divided into the experimental and control groups that received a triple antibiotic paste with and without MB infusion (n = 19 in each group), respectively. After 14 days, the number of live bacteria in the samples was determined using confocal laser scanning microscopy.
Results: After 14 days of contact with the medication, the percentages of live and dead bacteria were assessed. Results show that Group 2 (Triple antibiotic infused micro bubble) showed significantly (P < 0.05) higher antibacterial efficacy than Group 1 (TAP).
Conclusion: In this study, the antibacterial efficacy was significantly higher in the experimental group than in the control group. Therefore, within the limitations of the study it can be said that MB infusion is a viable technique to improve root canal disinfection. Hence, it can be considered as a novel technique for local drug delivery systems in endodontic management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178962 | PMC |
http://dx.doi.org/10.1016/j.sdentj.2024.03.010 | DOI Listing |
ACS Nano
December 2024
The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
Tumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC.
View Article and Find Full Text PDFMalays J Pathol
December 2024
Universiti Sains Malaysia, School of Dental Sciences, Health Campus, Kubang Kerian, Kelantan, Malaysia.
Introduction: Oral cancer is considered the sixth most common form of cancer worldwide. It causes significant morbidity and mortality, especially in low socioeconomic status groups. However, Cancer chemoprevention encompasses the use of specific compounds to suppress the growth of tumours or inhibit carcinogenesis.
View Article and Find Full Text PDFParasit Vectors
December 2024
Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
Background: Cystic echinococcosis (CE) is a common neglected parasitic disease. Nanoparticles containing drugs have been widely utilized in various formulations for several purposes, including improving the bioavailability of drugs by increasing the solubility and dissolution rate of the nanoparticles. The purpose of this study was to evaluate the effects of solid lipid nanoparticles containing albendazole and conjugated to albumin (B-SLN + ABZ) as a novel treatment approach for hydatid cysts in vivo.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, No. 359, Youhao North Road, Urumqi, Xinjiang, China.
Objective: This study aims to elucidate the mechanisms by which nanovesicles (NVs) transport curcumin(CUR) across the blood-brain barrier to treat hypothalamic neural damage induced by heat stroke by regulating the expression of poly(c)-binding protein 2 (PCBP2).
Methods: Initially, NVs were prepared from macrophages using a continuous extrusion method. Subsequently, CUR was loaded into NVs using sonication, yielding engineered cell membrane Nanovesicles loaded with curcumin (NVs-CUR), which were characterized and subjected to in vitro and in vivo tracking analysis.
J Nanobiotechnology
December 2024
Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.
Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!