Background: We have shown that ω3 polyunsaturated fatty acids (PUFAs) reduce risk for heart failure, regardless of ejection fraction status. Ventricular remodeling and reduced ventricular performance precede overt hear failure, however there is little insight into how PUFAs contribute to maladaptive signaling over time. PUFAs are agonists for regulatory activity at g-protein coupled receptors such as Ffar4, and downstream as substrates for monooxygenases (e.g lipoxygenase, cytochrome p450, or cyclooxygenase (COX)) which mediate intracellular adaptive signaling.
Methods: Plasma phospholipid PUFA abundance at Exam 1 as mass percent EPA, DHA, and arachidonic acid (AA) from the Multi-Ethnic Study of Atherosclerosis (MESA) were evaluated using pathway modeling to determine the association with time-dependent changes in left ventricular (LV) mass (LVM), end-diastolic LV volume (EDV), and end-systolic volume (ESV) measured by cardiac MRI at Exams 1 and 5. Ejection fraction (EF) and mass:volume (MV) were calculated posteriorly from the first three.
Results: 2,877 subjects had available MRI data. Participants with low AA and EPA had accelerated age-dependent declines in LVM. Males with low AA and EPA also had accelerated declines in EDV, but among females there was no PUFA association with EDV declines and exam 5 EDV status was positively associated with AA. Both sexes had nearly the same positive association of AA with changes in ESV.
Conclusion: Plasma phospholipid AA and EPA are prospectively associated with indices of heart remodeling, including ventricular remodeling and performance. Combined AA and EPA scarcity was associated with the most accelerated age-related changes and exam 5 status, while the greatest benefits were found among participants with both PUFAs. This suggests that both PUFAs are required for optimal slowing of age-related declines in ventricular function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177919 | PMC |
http://dx.doi.org/10.1101/2024.06.05.24308494 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!