Aurivillius structured BiTiFeMnO (B6TFMO) has emerged as a rare room temperature multiferroic, exhibiting reversible magnetoelectric switching of ferroelectric domains under cycled magnetic fields. This layered oxide presents exceptional avenues for advancing data storage technologies owing to its distinctive ferroelectric and ferrimagnetic characteristics. Despite its immense potential, a comprehensive understanding of the underlying mechanisms driving multiferroic behavior remains elusive. Herein, we employ atomic resolution electron microscopy to elucidate the interplay of octahedral tilting and atomic-level structural distortions within B6TFMO, associating these phenomena with functional properties. Fundamental electronic features at varying bonding environments within this complex system are scrutinized using electron energy loss spectroscopy (EELS), revealing that the electronic nature of the Ti cations within perovskite BO octahedra is influenced by position within the Aurivillius structure. Layer-by-layer EELS analysis shows an ascending crystal field splitting (Δ) trend from outer to center perovskite layers, with an average increase in Δ of 0.13 ± 0.06 eV. Density functional theory calculations, supported by atomic resolution polarization vector mapping of B-site cations, underscore the correlation between the evolving nature of Ti cations, the extent of tetragonal distortion and ferroelectric behavior. Integrated differential phase contrast imaging unveils the position of light oxygen atoms in B6TFMO for the first time, exposing an escalating degree of octahedral tilting toward the center layers, which competes with the magnitude of BO tetragonal distortion. The observed octahedral tilting, influenced by B-site cation arrangement, is deemed crucial for juxtaposing magnetic cations and establishing long-range ferrimagnetic order in multiferroic B6TFMO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170937 | PMC |
http://dx.doi.org/10.1021/acs.chemmater.4c00413 | DOI Listing |
J Phys Chem Lett
January 2025
Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain.
So far, the striking sign reversal in the near-ambient slope of the gap temperature dependence of colloidal CsPbCl perovskite nanocrystals (NCs) compared to its Br counterpart remains unresolved. Pure bromide NCs exhibit a linear gap increase with increasing temperature, to which thermal expansion and electron-phonon interaction equally contribute. In contrast, the temperature slope for the chlorine compound gap is clearly negative.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States.
In two-dimensional (2D) chiral metal-halide perovskites (MHPs), chiral organic spacers induce structural chirality and chiroptical properties in the metal-halide sublattice. This structural chirality enables reversible crystalline-glass phase transitions in (-NEA)PbBr, a prototypical chiral 2D MHP where NEA represents 1-(1-naphthyl)ethylammonium. Here, we investigate two distinct spherulite states of (-NEA)PbBr, exhibiting either radial-like or stripe-like banded patterns depending on the annealing conditions of the amorphous film.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, Hong Kong.
Lead-free halide double perovskites provide a promising solution for the long-standing issues of lead-containing halide perovskites, i.e., the toxicity of Pb and the low stability under ambient conditions and high-intensity illumination.
View Article and Find Full Text PDFACS Nano
January 2025
WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia.
Quadruple perovskite oxides have received extensive attention in electronics and catalysis, owing to their cation-ordering structure and intriguing physical properties. However, their repertoires still remain limited. In particular, piezoelectricity from quadruple perovskites has been rarely reported due to the frustrated symmetry-breaking transition in A-site-ordered perovskite structures, disabling their piezoelectric applications.
View Article and Find Full Text PDFACS Mater Au
January 2025
Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Two-dimensional lead iodide perovskites have attracted significant attention for their potential applications in optoelectronic and photonic devices due to their tunable excitonic properties. The choice of organic spacer cations significantly influences the light emission and exciton transport properties of these materials, which are vital for their device performance. In this Perspective, we discuss the impact of spacer cations on lattice dynamics and exciton-phonon coupling, focusing on three representative 2D lead iodide perovskites that exhibit distinct types of structural distortions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!