Objectives: The increasing issue of bacterial resistance, coupled with inadequate progress in developing new antibiotics, necessitates exploring alternative treatments. Antibacterial biomaterials, such as silver and copper, possess advantageous properties such as heat resistance, durability, continuity, and safety. Particularly, they can effectively eliminate pathogenic bacteria while preserving cellular integrity, emphasizing the necessity of identifying optimal metal ion concentrations for practical application. () can serve as a noteworthy model in this context. This study employed a infection model to assess the efficacy of antibacterial metal ions.
Methods: Hematoxylin-eosin (HE) staining and inductively coupled plasma mass spectrometry (ICP-MS) assay were utilized to determine the toxic levels of metal ions in mice. Additionally, RNA sequencing (RNA-seq) and assessment of reactive oxygen species (ROS) production in the model were conducted to elucidate the mechanisms underlying metal ion toxicity.
Results: Silver ion concentrations ranging from 10 to 10 M and copper ion concentrations ranging from 10 to 10 M exhibited antimicrobial properties without eliciting cytotoxic effects. Analysis of the transcriptome data derived from mRNA isolated from indicated that CRKP infection activated the FoxO signaling pathway, potentially leading to ROS accumulation and demise.
Conclusions: In conclusion, serves as a comprehensive infection model for assessing antibacterial metal ions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170617 | PMC |
http://dx.doi.org/10.62347/DIEO8870 | DOI Listing |
J Fluoresc
January 2025
Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Andhra Pradesh, 522510, India.
In this work, the conventional melt quenching approach is used to synthesize the Pr doped NaF-BiO-BO-SiO (NBBS) glasses. The influence of Pr ions on their spectroscopic and structural characteristics in glass network is investigated. The amorphous nature of the samples has been amply verified by X-ray diffraction patterns.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Department of Chemistry, Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia.
Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries.
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
As an abiotic stress factor, salinity significantly affects the physiological activities of crustaceans. In this study, transcriptome sequencing was used to evaluate the mechanism of ion transport and the physiological response of black tiger shrimp (Penaeus monodon) under low salt stress. Four hundred post larval (PL) stage P.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Monoclonal antibodies are extensively used as biotherapeutics for treatment of a variety of diseases. Glycosylation of therapeutic antibodies is considered a critical quality attribute as it influences the effector function, circulatory half-life, immunogenicity, and eventually efficacy and patient safety. During upstream process development, media components play a significant role in determining the glycosylation profile.
View Article and Find Full Text PDFLangmuir
January 2025
ESYCOM, CNRS-UMR 9007, Université Gustave Eiffel, F-77454 Marne-la-Vallée, France.
This study investigates the synthesis, characterization, and functional properties of well-aligned zinc oxide (ZnO) nanowires (NWs) obtained by a two-step hydrothermal method. ZnO NWs were grown on silicon substrates precoated with a ZnO seed layer. The growth process was conducted at 90 °C for different durations (2, 3, and 4 h) to examine the time-dependent evolution of the nanowire properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!