Heart failure poses a significant threat to global public health within the realm of cardiovascular diseases. Its pathological progression involves various alterations in cardiomyocytes, among which autophagy, a crucial intracellular degradation mechanism, plays a pivotal role. Autophagy facilitates the breakdown of damaged organelles and proteins, thereby maintaining cellular homeostasis. In the context of heart failure, autophagy coexists with apoptosis and necrosis, influencing myocardial hypertrophy and ventricular remodeling. However, its impact on heart failure manifests a dual nature: moderate autophagy aids in cardiac repair, whereas excessive autophagy may exacerbate ventricular remodeling and cell demise. This review delves into the fundamental biology of autophagy, elucidating its involvement in the pathological cascade of heart failure and its correlation with cardiac hypertrophy and ventricular remodeling. Furthermore, an analysis of the interplay between autophagy regulatory factors and heart failure sheds light on the potential therapeutic implications of autophagy in the prevention and management of heart failure. This exploration provides a theoretical foundation for novel treatment strategies in combating heart failure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170578 | PMC |
http://dx.doi.org/10.62347/OBXQ9477 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!