Background: The present study, plant extract to biosynthesize silver nanoparticles (AgNPs), is an environmentally benign way to lessen the use of dangerous chemicals.

Aims And Objectives: The antibacterial effects of the green production of AgNPs by extract were examined.

Materials And Methods: Utilizing scanning, transmission electron microscopy, X-ray diffraction (XRD), ultraviolet-visible spectroscopy, and infrared spectroscopy, researchers examined the physical and chemical characteristics of synthesized AgNPs.

Results: Ag-NPs have the highest peak in visible light at 460 nm, according to UV-vis analysis. When silver nanocrystals were structurally characterized, peaks that matched Bragg's diffractions were found, with average crystallite sizes ranging from 28 to 60 nm. Examining Ag-NPs' antibacterial properties, it was shown that all microbes are extremely sensitive to these biologically produced Ag-NPs.

Conclusion: were tested for the antimicrobial properties of AgNPs synthesized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174310PMC
http://dx.doi.org/10.4103/jpbs.jpbs_561_23DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
8
phytosynthesis eco-friendly
4
eco-friendly silver
4
nanoparticles biomedical
4
biomedical applications
4
applications background
4
background study
4
study plant
4
plant extract
4
extract biosynthesize
4

Similar Publications

COVID-19 disease, triggered by SARS-CoV-2 virus infection, has led to more than 7.0 million deaths worldwide, with a significant fraction of recovered infected people reporting postviral symptoms. Smart surfaces functionalized with nanoparticles are a powerful tool to inactivate the virus and prevent the further spreading of the disease.

View Article and Find Full Text PDF

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

Preparation, characterization, and antibacterial application of cross-linked nanoparticles composite films.

Food Chem X

January 2025

Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.

This study aimed to prepare a composite film by blending cross-linked tapioca starch (CLTS) with sodium alginate (SA), silver nanoparticles (AgNPs), and ZnO nanoparticles (ZnOs). The effects of SA, AgNPs, and ZnOs at different concentrations (1-3 wt%) on the mechanical properties, optical properties, thermal stability, and antibacterial activity of cross-linked starch films were also investigated. The structures of the films were examined by Fourier transform infrared spectroscopy and X-ray diffraction.

View Article and Find Full Text PDF

Preparation of a CNF porous membrane and synthesis of silver nanoparticles (AgNPs).

RSC Adv

January 2025

The Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan +81-45-566-1580 +81-45-566-1839.

We prepared a cellulose nanofiber (CNF)-based porous membrane with three dimensional cellular structures. CNF was concentrated a surfactant-induced assembly by mixing CNF with a cationic surfactant, domiphen bromide (DB). Furthermore, they were accumulated by centrifugation to obtain a CNF-DB sol.

View Article and Find Full Text PDF

Dentin hypersensitivity is primarily caused by the exposure of dentinal tubules due to various factors, so the key to treatment is to effectively seal these exposed tubules. However, traditional dentinal tubule sealants used in clinical practice often fail to adhere securely to the tubule surface when exposed to external stimuli, resulting in a recurrence of sensitivity. In this study, we developed a silicon micromotor that moved autonomously and loaded with silver nanoparticles and a photosensitive adhesive for dentin sensitivity therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!