During past glacial periods, the land cover of Northern Eurasia and North America repeatedly shifted between open steppe tundra and boreal/temperate forest. Tracking these changes and estimating the coverage of open versus forested vegetation in past glacial and interglacial landscapes is notoriously difficult because the characteristic dwarf birches of the tundra and the tree birches of the boreal and temperate forests produce similar pollen grains that are difficult to distinguish in the pollen record. One objective approach to separating dwarf birch pollen from tree birch pollen is to use grain size statistics. However, the required grain size measurements are time-consuming and, therefore, rarely produced. Here, we present an approach to automatic size measurement based on image recognition with convolutional neural networks and machine learning. It includes three main steps. First, the TOFSI algorithm is applied to detect and classify pollen, including birch pollen, in lake sediment samples. Second, a Resnet-18 neural network is applied to select the birch pollen suitable for measurement. Third, semantic segmentation is applied to detect the outline and the area and mean width of each detected birch pollen grain. Test applications with two pollen records from Northern Germany, one covering the Lateglacial-Early Holocene transition and the other covering the Mid to Late Pleistocene transition, show that the new technical approach is well suited to measure the area and mean width of birch pollen rapidly (>1000 per hour) and with high accuracy. Our new network-based tool facilitates more regular size measurements of birch pollen. Expanded analysis of modern birch pollen will help to better understand size variations in birch pollen between birch species and in response to environmental factors as well as differential sample preparation. Analysis of fossil samples will allow better quantification of dwarf birch versus tree birch in past environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176728PMC
http://dx.doi.org/10.1002/ece3.11510DOI Listing

Publication Analysis

Top Keywords

birch pollen
40
birch
14
pollen
14
size measurements
12
dwarf birch
12
tree birch
12
automatic size
8
records northern
8
northern germany
8
pollen grain
8

Similar Publications

The Correlation Between Airborne Pollen and Sensitization in Children with Respiratory Allergic Diseases: A Cross-Sectional Study.

J Asthma Allergy

December 2024

Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.

Background: Pollen is a significant contributor to respiratory allergies worldwide, underscoring the importance of understanding its association with childhood sensitization to enhance clinical management.

Objective: This study focuses on investigating the prevalence of various airborne pollens and their correlation with clinical characteristics of childhood respiratory allergic diseases in southeastern China.

Methods: From November 2020 to October 2021, this research employed Durham monitoring samplers to collect airborne pollen.

View Article and Find Full Text PDF
Article Synopsis
  • Birch pollen (BP) exposure leads to significant changes in gene expression and cytokine levels in allergic individuals compared to non-allergic individuals, indicating distinct biological responses.
  • RNA sequencing identified 160 genes activated in allergic participants, with specific pathways related to inflammation and immune response being enriched in their nasal secretions.
  • The findings suggest that BP allergy triggers unique signaling mechanisms in predisposed individuals, providing insights for future research into allergy treatments.
View Article and Find Full Text PDF

Residential greenness and pollen exposure across gestational trimesters in relation to preschool wheezing: Results for the PIPO birth cohort.

Environ Res

December 2024

Social Epidemiology and Health Policy, Department of Family Medicine and Population Health, University of Antwerp, Doornstraat 331, BE-2610, Wilrijk, Belgium; Institute for Environment and Sustainable Development (IMDO), Groenenborgerlaan 171, BE-2020, Antwerpen, Belgium; Laboratory of Applied Microbiology and Biotechnology (LAMB), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, BE-2020, Antwerpen, Belgium.

Introduction: Previous studies on prenatal green space exposure and early respiratory health show inconsistent results. This may reflect stage-specific in utero effects and pollen influence. We examine associations of surrounding greenness and pollen exposure during pregnancy (overall and by trimester) with preschool wheezing, and assess potential mediation by pollen.

View Article and Find Full Text PDF

Urban Greening and Pollen Allergy: Balancing Health and Environmental Sustainability.

J Allergy Clin Immunol Pract

December 2024

Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Immunology and Allergology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany. Electronic address:

Urban living requires a careful balance between human health and environmental sustainability when selecting urban vegetation. Public gardens and green roofs offer significant environmental benefits, including air filtration, exposure to health-associated microbiota, and mitigation of the urban heat island effect. However, prioritizing allergy-friendly species is crucial to prevent the exacerbation of pollen allergies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!