Disulfidptosis, a newly discovered mode of cell death caused by excessive accumulation of intracellular disulfide compounds, is closely associated with tumor development. This study focused on the relationship between disulfidptosis and clear cell renal cell carcinoma (ccRCC). Firstly, the characterizations of disulfidptosis-related genes (DRGs) in ccRCC were showed, which included number variation (CNV), single nucleotide variation (SNV), DNA methylation, mRNA expression and gene mutation. Then, the ccRCC samples were classified into three clusters through unsupervised clustering based on DRGs. Survival and pathway enrichment differences were evaluated among the three clusters. Subsequently, the differentially expressed genes (DEGs) among the three clusters were screened by univariate Cox, LASSO, and multivariate Cox analysis, and five key DEGs were obtained. Based on the five key DEGs, the ccRCC samples were reclassified into two geneclusters and the survival differences and immune cell infiltration between two geneclusters was investigated. In next step, ccRCC samples were divided into two groups according to PCA scores of five key DEGs, namely high PCA score group (HPSG) and low PCA score group (LPSG). On this basis, differences in survival prognosis, immune cell infiltration and correlation with immune checkpoint, as well as differences in sensitivity to targeted drugs were compared between HPSG and LPSG. The expression levels of four immune checkpoints were higher in HPSG than in LPSG, whereas the LPSG was more sensitive to targeted drug therapy than the HPSG. Finally, validation experiments on HDAC4 indicated that HDAC4 could increase the proliferation and colony formation ability of ccRCC cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180324PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e32258DOI Listing

Publication Analysis

Top Keywords

ccrcc samples
12
three clusters
12
key degs
12
disulfidptosis-related genes
8
clear cell
8
cell renal
8
renal cell
8
cell carcinoma
8
immune cell
8
cell infiltration
8

Similar Publications

Introduction: The role of mast cells (MCs) in clear cell renal carcinoma (ccRCC) is unclear, and comprehensive single-cell studies of ccRCC MCs have not yet been performed.

Methods: To investigate the heterogeneity and effects of MCs in ccRCC, we studied single-cell transcriptomes from four ccRCC patients, integrating both single-cell sequencing and bulk tissue sequencing data from online sequencing databases, followed by validation via spatial transcriptomics and multiplex immunohistochemistry (mIHC).

Results: We identified four MC signature genes (TPSB2, TPSAB1, CPA3, and HPGDS).

View Article and Find Full Text PDF

Eosinophilic solid and cystic renal cell carcinoma (ESC-RCC) is rare and often misdiagnosed as clear cell renal cell carcinoma (ccRCC). Therefore, a CT-based scoring system was developed to improve differential diagnosis. Retrospectively, 25 ESC-RCC and 176 ccRCC cases, were collected.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is one of the most common malignancies in the urinary system, and clear cell renal cell carcinoma (ccRCC) is the most common subtype. MYBL2 has been reported to be overexpressed in various tumors and associated with poor prognosis in patients, but its biological role in ccRCC remains unclear. In this study, we investigated the mRNA and protein expression levels of MYBL2 in ccRCC samples and evaluated the prognostic value of MYBL2 using TCGA dataset.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is characterised by significant genetic heterogeneity, which has diagnostic and prognostic implications. Very limited evidence is available regarding DNA methylation heterogeneity. We therefore generate sequence level DNA methylation data on 136 multi-region tumour and normal kidney tissue from 18 ccRCC patients, along with matched whole exome sequencing (85 samples) and gene expression (47 samples) data on a subset of samples.

View Article and Find Full Text PDF

The endonuclease activity of MCPIP1 controls the neoplastic transformation of epithelial cells via the c-Met/CD44 axis.

Cell Commun Signal

January 2025

Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.

The RNase activity of MCPIP1 is essential for regulating cellular homeostasis, proliferation, and tumorigenesis. Our study elucidates the effects of downregulation of MCPIP1 expression and an RNase-inactivating mutation (D141N) on normal epithelial kidney cells, indicating that MCPIP1 expression is a key factor that suppresses neoplastic transformation. We observed that either expression downregulation or mutation of MCPIP1 significantly increased its clonogenicity and altered the expression of cancer stem cell (CSC) markers and factors involved in epithelial-to-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!