Drought stress has a significant impact on the quality and quantity of lake water. Understanding this impact is crucial for preventing water security risks and pollution recovery. However, there is a lack of systemic understanding of how drought affects water quality and quantity, and how they change in multiple dimensions. This manuscript established a synthesized methodology with the principles to judge the applicability and three steps of application to detect the change in water quality and water level under severe drought in Xingyun Lake, China. Results show that (1) The water level and water quality of Xingyun Lake have a synchronous and evident response to drought during 2009-2014. The rainfall during 2008-2015 declined by 22.9 % to normal, and the inundated area and lake water depth in 2012 decreased by 10.50 % from 2002 to 1.38 m to the average depth, respectively. The pollution index climbed above 1.21 after 2008, fluctuating around 1.42. (2) Under drought, the water quality indicators significantly changed in the terms of the overall feature, trend, eigenvalue, and morphological characteristics. The water quality indicators of Set are significantly different from set and not in the groups of set. The morphological characteristics of water quality indicators in set differs significantly from that in set shown by the minimum, maximum, median, quartiles, and extreme values. (3) Although NH-N showed no significant change, the water quality deteriorated in the physical, chemical, and biological aspects. The TP, I, and BOD changed more evidently than DO and NH-N. (4) Water quality grade and indicator concentration deteriorated significantly and sharply under severe drought and are threatened deeply by TP and TN. The synthesized methodology is scientifically constructed and canbe employed in the characteristics cognition of water quality and water level to severe drought in and out of this research. And the intervention time and various regulating measures for pollution degradation and water quality recovery canbe constructed based on the multi-dimensional analysis of water quality change under drought evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180315 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e32213 | DOI Listing |
Front Vet Sci
December 2024
Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
spp. and hepatitis E virus (HEV) are significant foodborne zoonotic pathogens that impact the health of livestock, farmers, and the general public. This study aimed to identify biosecurity measures (BSMs) against these pathogens on swine farms in Europe, the United States, and Canada.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Laboratory of Advanced Studies in Vertical Agriculture, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Brazil.
Vertical Farming Systems (VFS) emerge as an approach to optimize plant growth in urban and controlled environments, by enabling sustainable and intensive production in reduced spaces. VFS allow for greater control over growing conditions, such as light, temperature and humidity, resulting in higher quality crops and with less use of resources, such as water and fertilizers. This research investigates the effects of different lighting regimes (Constant and Gaussian) and spectral qualities (white, RBW, blue and red) on the growth, photosynthesis, and biomass accumulation of lentil microgreens () in VFS.
View Article and Find Full Text PDFInfect Ecol Epidemiol
January 2025
Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
Brucellosis remains a significant public health concern, especially in regions like the Mediterranean and Afghanistan. While its direct health effects are well-documented, its impact on quality of life is less explored. This study investigated the risk factors and quality of life effects of brucellosis in Herat, Afghanistan.
View Article and Find Full Text PDFRSC Adv
January 2025
Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
Surface-enhanced Raman spectroscopy (SERS) is widely recognized as a powerful analytical technique, offering molecular identification by amplifying characteristic vibrational signals, even at the single-molecule level. While SERS has been successfully applied for a wide range of targets including pesticides, dyes, bacteria, and pharmaceuticals, it has struggled with the detection of molecules with inherently low Raman scattering cross-sections. Urea, a key nitrogen-containing biomolecule and the diamide of carbonic acid, is a prime example of such a challenging target.
View Article and Find Full Text PDFObjective: To systematically evaluate the efficacy of hyperbaric oxygen therapy for non-motor symptoms in patients with Parkinson's disease.
Data Sources: A systematic search was performed across several databases, including the Chinese Science and Technology Periodical Database, Web of Science, SinoMed, PubMed, Cochrane Library, Embase and Wanfang databases up to 1 December 2025. Studies considered for inclusion comprised randomised controlled trials and pre-post control studies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!