Polymeric materials can boost their performances by strategically incorporating inorganic substances. Heat dissipators are a representative class of such composite materials, where inorganic fillers and matrix polymers contribute to high thermal conductivity and strong adhesion, respectively, resulting in excellent heat dissipation performance. However, due to the complex interaction between fillers and polymers, even slight differences in structural parameters, e.g. dispersion/aggregation degree of fillers and crosslink density of polymers, may significantly impact material performance, complicating the quality management and guidelines for material developments. Therefore, we introduce pyrolysis mass spectra (MS) as material descriptors. On the basis of these spectra, we construct prediction models using a data-driven approach, specifically focusing on thermal conductivity and adhesion, which are key indicators for heat dissipating performance. Pyrolysis-MS observes thermally decomposable polymers, which occupy only 0.1 volume fraction of the heat dissipators; nevertheless, the physical states of non-decomposable inorganic fillers are implicitly reflected in the pyrolyzed fragment patterns of the matrix polymers. Consequently, pyrolysis-MS provides sufficient information to construct accurate models for predicting heat dissipation performance, simplifying quality management by substituting time-consuming performance evaluations with rapid pyrolysis-MS measurements. Furthermore, we elucidate that higher crosslinking density of the matrix polymers enhances thermal conductivity. This data-driven method promises to streamline the identification of key functional factors in complex composite materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177714PMC
http://dx.doi.org/10.1080/14686996.2024.2362125DOI Listing

Publication Analysis

Top Keywords

heat dissipators
12
matrix polymers
12
thermal conductivity
12
data-driven approach
8
pyrolysis mass
8
composite materials
8
inorganic fillers
8
heat dissipation
8
dissipation performance
8
quality management
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!