The surface of para-aramid fibers (AFs) was modified via air-assisted heat pretreatment and solution impregnation by varying the glycidyl polyhedral oligomeric silsesquioxane (POSS) content. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy showed an ester group, confirming the graft reaction between glycidyl POSS and oxidized AFs. The mechanical properties of AFs could be altered by varying the glycidyl POSS content. The modified AFs exhibited an optimal tensile strength after embedding 5 wt % glycidyl POSS on the fiber surface. The thermal stability of the modified fibers decreased; however, no obvious changes in crystallinity were observed by varying the glycidyl POSS content. Moreover, the tensile strength of monofilament increased from 23.8 to 25.8 cN·dtex, the thickness of the grafted layer on the fiber surface was above 30-40 nm after the graft modification with 5 wt % glycidyl POSS, and the interfacial shear strength (IFSS) increased by 62.55% to 26.22 MPa. Thus, the modified glycidyl AFs can be used for the reinforcement of composite materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11171105 | PMC |
http://dx.doi.org/10.1021/acsomega.4c00260 | DOI Listing |
Int J Biol Macromol
January 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials (Shaanxi University of Science & Technology), Xi'an 710021, China.
Extensively used plastic mulch film causes tremendous environmental pollution. Developing biodegradable mulch film represents an emerging demand for future agriculture. Bone gelatin (BG) has emerged as promising candidates in the field of biodegradable agricultural mulch film due to its eco-friendly and biodegradable attributes, yet the terrible mechanical properties and hydrophobicity are great challenges.
View Article and Find Full Text PDFACS Omega
June 2024
School of Materials and Energy Engineering, Guizhou Institute of Technology, Guiyang 550003, China.
The surface of para-aramid fibers (AFs) was modified via air-assisted heat pretreatment and solution impregnation by varying the glycidyl polyhedral oligomeric silsesquioxane (POSS) content. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy showed an ester group, confirming the graft reaction between glycidyl POSS and oxidized AFs. The mechanical properties of AFs could be altered by varying the glycidyl POSS content.
View Article and Find Full Text PDFPolymers (Basel)
April 2024
College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
A novel functional polycarbonate (PAGC), characterized by the presence of double bonds within its side chain, was successfully synthesized through a ternary copolymerization of propylene oxide (PO), allyl glycidyl ether (AGE), and carbon dioxide (CO). Polyhedral oligomeric silsesquioxanes octamercaptopropyl (POSS-SH) was employed as a crosslinking agent, contributing to the formation of organic-inorganic hybrid materials. This incorporation was facilitated through thiol-ene click reactions, enabling effective interactions between the POSS molecules and the double bonds in the side chains of the polycarbonate.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2024
College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
Dielectric materials with superb thermal and electrical properties are highly desired for high-voltage electrical equipment and advanced electronics. Here, we propose a novel strategy to improve the performance of epoxy composites by employing boron nitride nanosheets (BNNSs) and γ-glycidyl ether oxypropyl sesimoxane (G-POSS) as functional fillers. The resultant ternary epoxy composites exhibit high electrical resistivity (1.
View Article and Find Full Text PDFInt J Biol Macromol
February 2024
Bezmialem Vakıf University Health Sciences Institute, Department of Biotechnology, 34093 Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, 34093 Istanbul, Turkey.
Starch is one of the most frequently preferred natural polymers in hydrogel synthesis. Herein, we combined two strategies of associating brittle and ductile networks in a structure and incorporating inorganic particles into the polymeric gel to design mechanically enhanced nanocomposite double network (DN) starch gels. For the first time in the literature, nanocomposite starch gels (s-NC) were designed by cross-linking starch chains with 8-armed glycidyl-polyhedral oligomeric silsesquioxane (g-POSS) units.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!