The article addresses the accelerating human-machine interaction using the large language model (LLM). It goes beyond the traditional logical paradigms of explainable artificial intelligence (XAI) by considering poor-formalizable cognitive semantical interpretations of LLM. XAI is immersed in a hybrid space, where humans and machines have crucial distinctions during the digitisation of the interaction process. The author's convergent methodology ensures the conditions for making XAI purposeful and sustainable. This methodology is based on the inverse problem-solving method, cognitive modeling, genetic algorithm, neural network, causal loop dynamics, and eigenform realization. It has been shown that decision-makers need to create unique structural conditions for information processes, using LLM to accelerate the convergence of collective problem solving. The implementations have been carried out during the collective strategic planning in situational centers. The study is helpful for the advancement of explainable LLM in many branches of economy, science and technology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177345 | PMC |
http://dx.doi.org/10.3389/frai.2024.1406773 | DOI Listing |
Health Informatics J
January 2025
Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC, Australia.
The HIV epidemic in Indonesia is one of the fastest growing in Southeast Asia and is characterised by a number of geographic and sociocultural challenges. Can large language models (LLMs) be integrated with telehealth (TH) to address cost and quality of care? A literature review was performed using the PRISMA-ScR (2018) guidelines between Jan 2017 and June 2024 using the PubMed, ArXiv and semantic scholar databases. Of the 694 records identified, 12 studies met the inclusion criteria.
View Article and Find Full Text PDFNat Commun
January 2025
The Faculty of Data and Decisions Sciences, Technion - Israel Institute of Technology, Haifa, Israel.
Large Language Models (LLMs) have shown success in predicting neural signals associated with narrative processing, but their approach to integrating context over large timescales differs fundamentally from that of the human brain. In this study, we show how the brain, unlike LLMs that process large text windows in parallel, integrates short-term and long-term contextual information through an incremental mechanism. Using fMRI data from 219 participants listening to spoken narratives, we first demonstrate that LLMs predict brain activity effectively only when using short contextual windows of up to a few dozen words.
View Article and Find Full Text PDFPlast Reconstr Surg Glob Open
January 2025
Department of Computer Science, Johns Hopkins University, Baltimore, MD.
Artificial intelligence (AI) scribe applications in the healthcare community are in the early adoption phase and offer unprecedented efficiency for medical documentation. They typically use an application programming interface with a large language model (LLM), for example, generative pretrained transformer 4. They use automatic speech recognition on the physician-patient interaction, generating a full medical note for the encounter, together with a draft follow-up e-mail for the patient and, often, recommendations, all within seconds or minutes.
View Article and Find Full Text PDFNat Commun
January 2025
Kim Jaechul Graduate School of AI, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
Sci Data
January 2025
Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Large language models (LLMs) have the potential to enhance the verification of health claims. However, issues with hallucination and comprehension of logical statements require these models to be closely scrutinized in healthcare applications. We introduce CliniFact, a scientific claim dataset created from hypothesis testing results in clinical research, covering 992 unique interventions for 22 disease categories.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!