A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular mechanism of RBM14-mediated promotion of proliferation, migration, and invasion in osteosarcoma. | LitMetric

Background: Osteosarcoma (OS) is an exceptionally aggressive bone neoplasm that predominantly impacts the paediatric and adolescent population, exhibiting unfavourable prognosis. The importance of RNA binding motif protein 14 () in the aetiology of OS is not well understood, despite its established involvement in several other types of cancer.

Methods: In this study, we conducted an analysis of the expression profiles of in cancer tissues and cell lines. To achieve this, we will utilised data obtained from various databases including The Cancer Genome Atlas Program (TCGA) project, The Genotype-Tissue Expression (GTEx) Project, Gene Expression Omnibus (GEO) database, and cancer cell line encyclopedia (CCLE) data. Furthermore, this study also aims to examine the effects of on the proliferation, migration, and invasive properties of OS cells using cell functional gain and loss studies. In this study, we carried out an in-depth investigation to explore possible molecular pathways that underlie the regulation of the malignant phenotype found in OS by . This investigation involved integrating data from overexpression, knockdown RNA-seq experiments, and an array comprising 6,096 perturbed genes obtained from the Genetic Perturbation Similarity Analysis Database (GPSAdb). This research offers an opportunity to build a robust conceptual framework for the potential advancement of novel therapeutic approaches that are especially aimed at attacking OS.

Results: plays an active role in OS by significantly contributing to the enhancement of cellular proliferation, migration, and invasion. At the molecular level, it is probable that exerts control over the malignant characteristics of OS through its modulation of the Hippo signalling system.

Conclusions: The above-mentioned findings underscore the significant importance of as an intriguing target for therapy for the mitigation and management of OS. This particular protein holds an excellent opportunity for the development of novel and efficacious therapeutic approaches that possess the potential to yield favorable results for patients affected with OS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170514PMC
http://dx.doi.org/10.21037/tcr-23-2070DOI Listing

Publication Analysis

Top Keywords

proliferation migration
12
migration invasion
8
therapeutic approaches
8
molecular mechanism
4
mechanism rbm14-mediated
4
rbm14-mediated promotion
4
promotion proliferation
4
invasion osteosarcoma
4
osteosarcoma background
4
background osteosarcoma
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!