The effects of alkyl substitution on the aggregation of π-conjugated dyes: spectroscopic study and modelling.

Phys Chem Chem Phys

Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy.

Published: June 2024

A family of dithienosilole-based dyes with alternating donor and acceptor conjugated groups, decorated with linear or branched alkyl chains at different positions on the backbone, have been obtained and investigated in different aggregation states. These dyes are characterized by almost panchromatic absorption and by near-IR emission, with good quantum yields in a variety of solvents with different polarity. We demonstrate that the nature and position of the alkyl substituents strongly govern the self-assembly of the dyes, whose packing is also sensitive to external stimuli, such as grinding and water addition. Thanks to computational results and theoretical modelling, we are able to interpret the results based on two possible preferential packings, characterized by distinct spectroscopic behaviour, whose abundance can be tuned according to the nature and position of the alkyl chains, as well as external stimuli.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp01579gDOI Listing

Publication Analysis

Top Keywords

alkyl chains
8
nature position
8
position alkyl
8
external stimuli
8
effects alkyl
4
alkyl substitution
4
substitution aggregation
4
aggregation π-conjugated
4
dyes
4
π-conjugated dyes
4

Similar Publications

Gold(I)-Catalyzed 2-Deoxy-β-glycosylation via 1,2-Alkyl/Arylthio Migration: Synthesis of Velutinoside A Pentasaccharide.

J Am Chem Soc

January 2025

Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.

View Article and Find Full Text PDF

Enthalpy is often the focal point when designing monomers for polymer circularity, but much less is explored on how entropy can be exploited to create polymers with synergistic circularity and properties. Here, we design a series of spiro-lactones (SLs) with closed-chain cycloalk(en)yl substituents at the α,α-position of δ-valerolactone (δVL), which, when combined with the parent δVL and -α,α-dialkyl-substituted δVL with open-chain alkyl groups, provide a desired platform for exploring the circular polymer design by focusing on the entropy change of polymerization. These SLs exhibit finely balanced (de)polymerizability that is regulated chiefly by entropy differentiation, allowing both the facile synthesis of polyester PSLs ( up to 1000 kg mol) in a living fashion and selective depolymerization of the PSLs to completely recover monomers under mild conditions (using a recyclable catalyst at 100 °C).

View Article and Find Full Text PDF

Isoxazole and oxadiazole derivatives inhibiting 3-hydroxykynurenine transaminase (3HKT) are potential larvicidal candidates. This study aims to identify more suited potential inhibitors of 3HKT (3HKT) through molecular docking and molecular dynamics simulation. A total of 958 compounds were docked against 3HKT (PDB ID: 2CH2) using Autodock vina and Autodock4.

View Article and Find Full Text PDF

Cellulose-based multifunctional materials with robust hydrophobic, antibacterial, and antioxidant properties through dynamic cross-linked network structures.

Int J Biol Macromol

January 2025

Key Lab of Paper Science and Technology of Ministry of Elucation, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China. Electronic address:

Environmental pollution and health problems caused by traditional non-degradable fossil-based plastics are significant concerns, rendering green and renewable bio-based materials, such as cellulose and C-Priamine (1074), as attractive substitutes. In particular, the low plasticity of cellulose can be optimized using soft alkyl chains. Herein, multifunctional cellulose-based materials were constructed via covalent adaptable networks using the Schiff base reaction of oxidized microcrystalline cellulose with varying aldehyde (dialdehyde cellulose (DAC)) contents and C-Priamine (1074).

View Article and Find Full Text PDF

Sulfate and sulfonate compounds are extensively used as anionic surfactants in personal care products (PCPs), which might pose adverse potential to human health. However, available research mostly identified certain subsets of sulfated and sulfonated surfactants based on target analysis. In this study, we developed a comprehensive nontarget strategy for identification of sulfated and sulfonated surfactants in PCPs using UHPLCHRMS supplemented by an in-lab R script based on characteristic fragment ions and sulfur isotope patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!