Complex (CpCe)(TCNQ)(CeCp) (1) was prepared by reducing neutral TCNQ (tetracyanoquinodimethane) with CpCe(THF). Two types of cerium centres with a dianionic TCNQ moiety are present in 1, wherein each of the four cyano-groups are bound by a cation. Formation of this trapped-valent organocerium compound 1 is facilitated by metal-ligand redox cooperativity. Characterization of 1 was carried out using structural-, magnetometry-, and IR-spectroscopic analyses. Photophysical studies on this compound reveal Ce luminescence, and opens up avenues for promising multifunctional, mixed-valent lanthanide materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc01478b | DOI Listing |
Dalton Trans
January 2025
LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099 F-31077 Toulouse cedex 4, France.
Functional pincer ligands that engage in metal-ligand cooperativity and/or are capable of redox non-innocence have found a great deal of success in catalysis. These two properties may be found in metal complexes of the 2,6-bis(pyrazol-3-yl)pyridine (bpp) ligands. With this goal in mind, we have attempted the coordination of 2,6-bis(5-trifluoromethylpyrazol-3-yl)pyridine (LCF3) and its Bu analogue 2,6-bis(5--butylpyrazol-3-yl)pyridine (LtBu) to Mo(0) by reactions with mixed phosphine/carbonyl complexes [Mo(CO)(MeCN)(PMePh)] 1-3 (1 ≤ ≤ 3).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Martin-Luther-Universitat Halle-Wittenberg, Department of Chemistry, Kurt-Mothes-Str. 2, 06120, Halle, GERMANY.
A pronounced nucleophilicity in combination with a distinct redox non-innocence is a unique feature of a coordinated ligand, which in the current case, leads to unprecedented carbon-centered reactivity patterns: A carbodiphosphorane-based (CDP) pincer-type rhodium complex allows to cleave two C-Cl-bonds of geminal dichlorides via two consecutive SN2-type oxidative additions resulting in the formation of a stabilized carbene fragment. In the presence of a suitable reductant the carbene fragment can even be converted into olefines or hydrodehalogenation products in a catalytic reaction. The developed method can also be used to convert chlorofluorocarbons (CFCs) such as CH2ClF to fluoromethane and methane.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
Phys Chem Chem Phys
December 2024
Department of Chemistry, CMS College Kottayam (Autonomous) Mahatma Gandhi University, Kottayam, Kerala, 686001, India.
A detailed theoretical study delving into the molecular mechanisms of the Ullmann-type -arylation reactions catalyzed by manganese and zinc metal ions has been investigated with the aid of the density functional theory (DFT) method. In contrast to the redox-active mechanisms proposed for classical Ullmann-type condensation reaction, a redox-neutral mechanism involving σ-bond metathesis emerged as the most appealing pathway for the investigated high-valent Mn(II) and Zn(II)-catalyzed -arylation reactions. The mechanism remains invariant with respect to the nature of the central metal, ligand, base, This unusuality in the mechanism has been dissected by considering three cases: ligand-free and ligand-assisted Mn(II)-catalyzed -arylation reaction and ligand-assisted Zn(II)-catalyzed -arylation reactions.
View Article and Find Full Text PDFDalton Trans
November 2024
Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan, India.
The synthesis of a novel phosphine-based pincer chromium(II) complex CrCl(PONN) (Cr-1) is reported in this study. The complex exhibited promising catalytic performance in C-C and C-N bond formation using the borrowing hydrogen methodology. Cr-1 catalyzed the α-alkylation of ketones using primary alcohols as alkyl surrogates in the presence of catalytic amount of a base.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!