Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plant-mediated biosynthesis of nanoparticles is a green method that allows synthesis in one-pot process. Synthesis of gold nanoparticles with plant extracts has gained interest in the field of biomedicine due to its variety of applications. This study presents the synthesis green chemistry of gold nanoparticles (AuNPs) using the methanol extract of seeds. The AuNPs were synthesized at room temperature. UV-Vis spectroscopy confirmed the formation of AuNPs by identifying the surface plasmon resonance located at 546 nm. TEM analysis shows spherical nanoparticles. FTIR analysis demonstrated the presence of specific bioactive molecules responsible for the Au ion reduction process. The antioxidant activity of the nanoparticles was evaluated on the stabilization of the DPPH radical (1,1-diphenyl-2-picrylhydrazyl, 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl). The antimicrobial activity analysis was developed by broth microdilution method at different concentrations against and . Minimum inhibitory concentration were 400 µg/mL and 200 µg/mL, respectively. A549 lung cancer cell proliferation was measured according to the MTT protocol, indicating a dose-dependent response and a IC of 163.9 ± 13.27 µg/mL. The AuNPs synthesized using seeds showed promise as active materials for antimicrobial or anticancer products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10934529.2024.2366736 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!