A total of 525 specimens from 100 slaughter beef cattle were examined for the presence of Campylobacter jejuni and Campylobacter coli by direct plating and enrichment techniques. Isolates were identified by cultural, biochemical, antibiotic sensitivity, and immunofluorescence tests and further characterized with the aid of recently developed biotyping and serotyping methods. Fifty animals were positive for C. jejuni; only one was positive for C. coli. The distribution pattern of C. jejuni-positive animals, in decreasing order, was steers (55%), bulls (40%), heifers (40%), and cows (22%). Significantly higher isolation rates were obtained from the gall bladders (33%), large intestines (35%), and small intestines (31%) than from the livers (12%) or the lymph nodes (1.4%). C. jejuni isolation by the enrichment technique was 40.2% more frequent than by direct plating; 24-h enrichment resulted in 24% more isolations than 48-h enrichment. Eighty-four of 105 C. jejuni cultures were typable serologically and represented 13 serogroups. Biotype I accounted for 71% of biotyped cultures. Serogroup 7 biotype I was the most commonly encountered (24%) isolate. About one in three positive animals had C. jejuni strains representing more than one serogroup. C. jejuni serogroups encountered in slaughter cattle were similar to those commonly isolated from human sources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC373568 | PMC |
http://dx.doi.org/10.1128/aem.49.3.667-672.1985 | DOI Listing |
Curr Res Microb Sci
December 2024
Area of Microbiology, Department of Health Sciences, Faculty of Experimental sciences, University of Jaén, Jaén, Spain.
Slaughterhouse environments are prone to microbial contamination, influenced by factors like set-up, size and area as well as disinfection practices. Thus, effective control measures are crucial to prevent the spread of pathogens and their contaminant genes (antimicrobial resistance genes and virulence factors) throughout the food chain. In the present study, we assessed the microbial contamination in environmental surfaces of three slaughterhouses located in the Jaén province (Spain).
View Article and Find Full Text PDFGut Microbes
December 2025
Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
, non-typhoidal spp., and enteropathogenic/enterohemorrhagic (EPEC/EHEC) are leading causes of food-borne illness worldwide. has been used to model EPEC and EHEC infection in mice.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada.
is a leading foodborne pathogen that may enter a viable but nonculturable (VBNC) state to survive under environmental stresses, posing a significant health concern. VBNC cells can evade conventional culture-based detection methods, while viability-based assays are usually hindered by low sensitivity, insufficient specificity, or technical challenges. There are limited studies analyzing VBNC cells at the single-cell level for accurate detection and an understanding of their unique behavior.
View Article and Find Full Text PDFRadiol Case Rep
March 2025
Department of Radiology, Imo State University, Imo State, Nigeria.
A unique case report on campylobacter rectus infection leading to acute motor axonal neuropathy in a pediatric patient. Campylobacter rectus is an anaerobic bacterium found in the oral cavity. While it has been linked to periodontal disease, its association with acute motor axonal neuropathy (AMAN), a variant of Guillain-Barre Syndrome, remains unverified.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.
Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!