Background: Melanoma is one of the most malignant forms of skin cancer, with a high mortality rate in the advanced stages. Therefore, early and accurate detection of melanoma plays an important role in improving patients' prognosis. Biopsy is the traditional method for melanoma diagnosis, but this method lacks reliability. Therefore, it is important to apply new methods to diagnose melanoma effectively.
Aim: This study presents a new approach to classify melanoma using deep neural networks (DNNs) with combined multiple modal imaging and genomic data, which could potentially provide more reliable diagnosis than current medical methods for melanoma.
Method: We built a dataset of dermoscopic images, histopathological slides and genomic profiles. We developed a custom framework composed of two widely established types of neural networks for analysing image data Convolutional Neural Networks (CNNs) and networks that can learn graph structure for analysing genomic data-Graph Neural Networks. We trained and evaluated the proposed framework on this dataset.
Results: The developed multi-modal DNN achieved higher accuracy than traditional medical approaches. The mean accuracy of the proposed model was 92.5% with an area under the receiver operating characteristic curve of 0.96, suggesting that the multi-modal DNN approach can detect critical morphologic and molecular features of melanoma beyond the limitations of traditional AI and traditional machine learning approaches. The combination of cutting-edge AI may allow access to a broader range of diagnostic data, which can allow dermatologists to make more accurate decisions and refine treatment strategies. However, the application of the framework will have to be validated at a larger scale and more clinical trials need to be conducted to establish whether this novel diagnostic approach will be more effective and feasible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180689 | PMC |
http://dx.doi.org/10.1111/srt.13770 | DOI Listing |
Sci Rep
January 2025
College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China.
Hepatic cystic echinococcosis (HCE), a life-threatening liver disease, has 5 subtypes, i.e., single-cystic, polycystic, internal capsule collapse, solid mass, and calcified subtypes.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
College of Computer, Chongqing University, No. 55 Daxuecheng South Rd, Shapingba, 401331, Chongqing, China.
Convolutional neural networks (CNNs) have become indispensable to medical image diagnosis research, enabling the automated differentiation of diseased images from extensive medical image datasets. Due to their efficacy, these methods raise significant privacy concerns regarding patient images and diagnostic models. To address these issues, some researchers have explored privacy-preserving medical image diagnosis schemes using fully homomorphic encryption (FHE).
View Article and Find Full Text PDFCogn Affect Behav Neurosci
January 2025
Departamento de Psicología ClínicaPsicobiología y MetodologíaFacultad de Psicología, Universidad de La Laguna, La Laguna, 38200, Tenerife, Spain.
Small animal phobia (SAP) is a subtype of specific phobia characterized by an intense and irrational fear of small animals, which has been underexplored in the neuroscientific literature. Previous studies often faced limitations, such as small sample sizes, focusing on only one neuroimaging modality, and reliance on univariate analyses, which produced inconsistent findings. This study was designed to overcome these issues by using for the first time advanced multivariate machine-learning techniques to identify the neural mechanisms underlying SAP.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Psychiatry, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA.
Childhood abuse represents one of the most potent risk factors for the development of psychopathology during childhood, accounting for 30-60% of the risk for onset. While previous studies have separately associated reductions in gray matter volume (GMV) with childhood abuse and internalizing psychopathology (IP), it is unclear whether abuse and IP differ in their structural abnormalities, and which GMV features are related to abuse and IP at the individual level. In a pooled multisite, multi-investigator sample, 246 child and adolescent females between the ages of 8-18 were recruited into studies of interpersonal violence (IPV) and/or IP (i.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Identifying transitional states is crucial for understanding protein conformational changes that underlie numerous biological processes. Markov state models (MSMs), built from Molecular Dynamics (MD) simulations, capture these dynamics through transitions among metastable conformational states, and have demonstrated success in studying protein conformational changes. However, MSMs face challenges in identifying transition states, as they partition MD conformations into discrete metastable states (or free energy minima), lacking description of transition states located at the free energy barriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!