Background: Predicting functional impairment after intracerebral hemorrhage (ICH) provides valuable information for planning of patient care and rehabilitation strategies. Current prognostic tools are limited in making long term predictions and require multiple expert-defined inputs and interpretation that make their clinical implementation challenging. This study aimed to predict long term functional impairment of ICH patients from admission non-contrast CT scans, leveraging deep learning models in a survival analysis framework.

Methods: We used the admission non-contrast CT scans from 882 patients from the Massachusetts General Hospital ICH Study for training, hyperparameter optimization, and model selection, and 146 patients from the Yale New Haven ICH Study for external validation of a deep learning model predicting functional outcome. Disability (modified Rankin scale [mRS] > 2), severe disability (mRS > 4), and dependent living status were assessed via telephone interviews after 6, 12, and 24 months. The prediction methods were evaluated by the c-index and compared with ICH score and FUNC score.

Results: Using non-contrast CT, our deep learning model achieved higher prediction accuracy of post-ICH dependent living, disability, and severe disability by 6, 12, and 24 months (c-index 0.742 [95% CI -0.700 to 0.778], 0.712 [95% CI -0.674 to 0.752], 0.779 [95% CI -0.733 to 0.832] respectively) compared with the ICH score (c-index 0.673 [95% CI -0.662 to 0.688], 0.647 [95% CI -0.637 to 0.661] and 0.697 [95% CI -0.675 to 0.717]) and FUNC score (c-index 0.701 [95% CI- 0.698 to 0.723], 0.668 [95% CI -0.657 to 0.680] and 0.727 [95% CI -0.708 to 0.753]). In the external independent Yale-ICH cohort, similar performance metrics were obtained for disability and severe disability (c-index 0.725 [95% CI -0.673 to 0.781] and 0.747 [95% CI -0.676 to 0.807], respectively). Similar AUC of predicting each outcome at 6 months, 1 and 2 years after ICH was achieved compared with ICH score and FUNC score.

Conclusion: We developed a generalizable deep learning model to predict onset of dependent living and disability after ICH, which could help to guide treatment decisions, advise relatives in the acute setting, optimize rehabilitation strategies, and anticipate long-term care needs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569453PMC
http://dx.doi.org/10.1177/23969873241260154DOI Listing

Publication Analysis

Top Keywords

deep learning
20
learning model
12
severe disability
12
dependent living
12
compared ich
12
ich score
12
[95%
11
ich
9
intracerebral hemorrhage
8
predicting functional
8

Similar Publications

Plastic waste management is one of the key issues in global environmental protection. Integrating spectroscopy acquisition devices with deep learning algorithms has emerged as an effective method for rapid plastic classification. However, the challenges in collecting plastic samples and spectroscopy data have resulted in a limited number of data samples and an incomplete comparison of relevant classification algorithms.

View Article and Find Full Text PDF

Background And Objective: Patients with thoracic aortic aneurysm and dissection (TAAD) are often asymptomatic but present acutely with life threatening complications that necessitate emergency intervention. Aortic diameter measurement using computed tomography (CT) is considered the gold standard for diagnosis, surgical planning, and monitoring. However, manual measurement can create challenges in clinical workflows due to its time-consuming, labour-intensive nature and susceptibility to human error.

View Article and Find Full Text PDF

Purpose: The incidence of cancer, which is a serious public health concern, is increasing. A predictive analysis driven by machine learning was integrated with haematology parameters to create a method for the simultaneous diagnosis of several malignancies at different stages.

Patients And Methods: We analysed a newly collected dataset from various hospitals in Jordan comprising 19,537 laboratory reports (6,280 cancer and 13,257 noncancer cases).

View Article and Find Full Text PDF

Over the past decade, there has been a global increase in the incidence of skin cancers. Skin cancer has serious consequences if left untreated, potentially leading to more advanced cancer stages. In recent years, deep learning based convolutional neural network have emerged as powerful tools for skin cancer detection.

View Article and Find Full Text PDF

Deep cascaded registration and weakly-supervised segmentation of fetal brain MRI.

Heliyon

January 2025

BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.

Deformable image registration is a cornerstone of many medical image analysis applications, particularly in the context of fetal brain magnetic resonance imaging (MRI), where precise registration is essential for studying the rapidly evolving fetal brain during pregnancy and potentially identifying neurodevelopmental abnormalities. While deep learning has become the leading approach for medical image registration, traditional convolutional neural networks (CNNs) often fall short in capturing fine image details due to their bias toward low spatial frequencies. To address this challenge, we introduce a deep learning registration framework comprising multiple cascaded convolutional networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!