Genetically modified live vaccine offers protective immunity against wild-type Anaplasma marginale tick-transmission challenge.

Vaccine

Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States; Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States. Electronic address:

Published: October 2024

Anaplasma marginale is a tick-borne pathogen of cattle that causes bovine anaplasmosis in tropical and subtropical regions throughout the world. Killed vaccines derived from infected erythrocytes have been used for control of this disease with limited success. Recently, we described a targeted deletion mutation in the phage head-to-tail connector protein gene of A. marginale which caused bacterial attenuation in vivo and provided protection as a modified live vaccine (MLAV). Following intravenous injection of susceptible steers, the MLAV induced protective immunity against disease progression. In the current study, we demonstrated that the immunity resulting from MLAV in cattle prevents the disease progression resulting from virulent A. marginale intrastadial transmission from infected Dermacentor variabilis male ticks. The nonimmunized control steers receiving the infection from ticks developed fever, lethargy, and inappetence for several days post tick exposure with significant decreases in the packed cell volume and increases in bacteremia. In contrast, the MLAV immunized steers remained healthy after being challenged with infected ticks and this group of animals had a significant reduction in bacteremia as compared with the controls. This study demonstrated that the A. marginale MLAV provided protection against acute tick-transmitted anaplasmosis, in addition to protection documented in steers challenge-exposed with infected blood as reported previously.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11401762PMC
http://dx.doi.org/10.1016/j.vaccine.2024.06.036DOI Listing

Publication Analysis

Top Keywords

modified live
8
live vaccine
8
protective immunity
8
anaplasma marginale
8
provided protection
8
disease progression
8
study demonstrated
8
marginale
5
mlav
5
genetically modified
4

Similar Publications

For consideration of uncertainties of a medicine dataset, a new conceptual architecture fuzzy three-valued logic is introduced in this research work. The proposed concept is applied to the heart disease dataset for the assessment of heart disease risk in individuals. By comparison of three binary (0,1) input variables, the variables' uncertainties and their collective impact can be analyzed that provide complete information leading to better outcome prediction.

View Article and Find Full Text PDF

Isolation of the feline herpesvirus-1 modified live vaccine strain F2 from one of four cats with dendritic ulcers.

J Feline Med Surg

January 2025

Environmental Science for Sustainable Development, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.

Objectives: To investigate the pathogenicity of feline herpesvirus-1 (FHV-1) to the cornea, FHV-1 strains isolated from feline eyes with dendritic ulcers were subjected to genomic analysis to determine whether FHV-1 vaccine strains are involved in the formation of dendritic ulcers.

Methods: All open reading frame (ORF) sequences of the three F2 strains (Virbac, Intervet and Merial) and the FHV-1 clinical isolates from cats registered in GenBank were compared to detect nucleotide variants unique to the F2 strains, with those nucleotides then being used for simple genotyping of the F2 strains. In all isolates from feline eyes with dendritic ulcers, the regions including nucleotide variants of the F2 strain were amplified with PCR and sequenced.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Background: Despite recent FDA approvement of disease-modifying treatments that reduce Aβ, the identification of novel therapeutic strategies that could delay the Alzheimer's disease (AD) development are needed. We identified and developed novel small molecule compounds that mildly inhibit mitochondrial complex I (MCI). Chronic treatment with a tool compound CP2 in 4 mouse models of familial AD was efficacious protecting against synaptic dysfunction and memory impairment, improving brain energetics and cognitive performance, reducing levels of human pTau and Ab.

View Article and Find Full Text PDF

Contrasting two versions of the 4-cup 2-item disjunctive syllogism task in great apes.

Anim Cogn

January 2025

School of Psychology and Neuroscience, University of St. Andrews, St. Andrews, KY16 9AJ, UK.

Chimpanzees excel at inference tasks which require that they search for a single food item from partial information. Yet, when presented with 2-item tasks which test the same inference operation, chimpanzees show a consistent breakdown in performance. Here we test a diverse zoo-housed cohort (n = 24) comprising all 4 great ape species under the classic 4-cup 2-item task, previously administered to children and chimpanzees, and a modified task administered to baboons.

View Article and Find Full Text PDF

Ferroptosis and sonodynamic therapy (SDT) are both promising therapeutic modalities, but their clinical application remains challenging due to the hypoxic tumor microenvironment and limited supply of polyunsaturated fatty acids. Developing an agent with oxygen-enhanced SDT and increased ferroptosis sensitivity is crucial for advancing tumor therapy. In this study, catalase (Cat) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) highly expressed 4T1 cells were constructed lentivirus transfection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!