Spatially fractionated radiation therapy (SFRT), also known as the GRID and LATTICE radiotherapy (GRT, LRT), the concept of treating tumors by delivering a spatially modulated dose with highly non-uniform dose distributions, is a treatment modality of growing interest in radiation oncology, physics, and radiation biology. Clinical experience in SFRT has suggested that GRID and LATTICE therapy can achieve a high response and low toxicity in the treatment of refractory and bulky tumors. Limited initially to GRID therapy using block collimators, advanced, and versatile multi-leaf collimators, volumetric modulated arc technologies and particle therapy have since increased the capabilities and individualization of SFRT and expanded the clinical investigation of SFRT to various dosing regimens, multiple malignancies, tumor types and sites. As a 3D modulation approach outgrown from traditional 2D GRID, LATTICE therapy aims to reconfigure the traditional SFRT as spatial modulation of the radiation is confined solely to the tumor volume. The distinctively different beam geometries used in LATTICE therapy have led to appreciable variations in dose-volume distributions, compared to GRID therapy. The clinical relevance of the variations in dose-volume distribution between LATTICE and traditional GRID therapies is a crucial factor in determining their adoption in clinical practice. In this Point-Counterpoint contribution, the authors debate the pros and cons of GRID and LATTICE therapy. Both modalities have been used in clinics and their applicability and optimal use have been discussed in this article.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.semradonc.2024.04.006 | DOI Listing |
Nat Photonics
October 2024
Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, Varennes, Quebec Canada.
Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC 27599, USA.
Radiotherapy (RT) is an integral component in the multidisciplinary management of patients with head and neck squamous cell carcinoma (HNSCC). Significant advances have been made toward optimizing tumor control and toxicity profiles of RT for HNSCC in the past two decades. The development of intensity modulated radiotherapy (IMRT) and concurrent chemotherapy established the standard of care for most patients with locally advanced HNSCC around the turn of the century.
View Article and Find Full Text PDFJ Chem Inf Model
December 2024
Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States.
Drug efficacy often correlates better with dissociation kinetics than binding affinity alone. To study binding kinetics computationally, it is necessary to identify all of the possible ligand dissociation pathways. The site identification by ligand competitive saturation (SILCS) method involves the precomputation of a set of maps (FragMaps), which describe the free energy landscapes of typical chemical functionalities in and around a target protein or RNA.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, P. R. China.
Osteomyelitis with a high recurrence rate. Timely-prevention can avoid severe consequence and death. However, conventional drug response-release has the disadvantages of unnecessary release and waste, causing ineffective prevention.
View Article and Find Full Text PDFNPJ Quantum Mater
December 2024
I. Institute of Theoretical Physics, University of Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany.
Superconductivity emerges from the spatial coherence of a macroscopic condensate of Cooper pairs. Increasingly strong binding and localization of electrons into these pairs compromises the condensate's phase stiffness, thereby limiting critical temperatures - a phenomenon known as the BCS-BEC crossover in lattice systems. In this study, we demonstrate enhanced superconductivity in a multiorbital model of alkali-doped fullerides (AC) that goes beyond the limits of the lattice BCS-BEC crossover.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!