A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Open cranium model for the study of cerebrovascular dynamics in intracranial hypertension. | LitMetric

Open cranium model for the study of cerebrovascular dynamics in intracranial hypertension.

J Neurosci Methods

Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Electronic address:

Published: September 2024

Background: Significant research has been devoted to developing noninvasive approaches to neuromonitoring. Clinical validation of such approaches is often limited, with minimal data available in the clinically relevant elevated ICP range.

New Method: To allow ultrasound-guided placement of an intraventricular catheter and to perform simultaneous long-duration ICP and ultrasound recordings of cerebral blood flow, we developed a large unilateral craniectomy in a swine model. We also used a microprocessor-controlled actuator for intraventricular saline infusion to reliably and reversibly manipulate ICP according to pre-determined profiles.

Results: The model was reproducible, resulting in over 80 hours of high-fidelity, multi-parameter physiological waveform recordings in twelve animals, with ICP ranging from 2 to 78 mmHg. ICP elevations were reversible and reproducible according to two predetermined profiles: a stepwise elevation up to an ICP of 30-35 mmHg and return to normotension, and a clinically significant plateau wave. Finally, ICP was elevated to extreme levels of greater than 60 mmHg, simulating extreme clinical emergency.

Comparison With Existing Methods: Existing methods for ICP monitoring in large animals typically relied on burr-hole approaches for catheter placement. Accurate catheter placement can be difficult in pigs, given the thickness of their skull. Additionally, ultrasound is significantly attenuated by the skull. The open cranium model overcomes these limitations.

Conclusions: The hemicraniectomy model allowed for verified placement of the intraventricular catheter, and reversible and reliable ICP manipulation over a wide range. The large dural window additionally allowed for long-duration recording of cerebral blood flow velocity from the middle cerebral artery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2024.110196DOI Listing

Publication Analysis

Top Keywords

icp
9
open cranium
8
cranium model
8
placement intraventricular
8
intraventricular catheter
8
cerebral blood
8
blood flow
8
existing methods
8
catheter placement
8
model
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!