Background: Depression is a global mental disorder, and traditional diagnostic methods mainly rely on scales and subjective evaluations by doctors, which cannot effectively identify symptoms and even carry the risk of misdiagnosis. Brain-Computer Interfaces inspired deep learning-assisted diagnosis based on physiological signals holds promise for improving traditional methods lacking physiological basis and leads next generation neuro-technologies. However, traditional deep learning methods rely on immense computational power and mostly involve end-to-end network learning. These learning methods also lack physiological interpretability, limiting their clinical application in assisted diagnosis.
Methodology: A brain-like learning model for diagnosing depression using electroencephalogram (EEG) is proposed. The study collects EEG data using 128-channel electrodes, producing a 128×128 brain adjacency matrix. Given the assumption of undirected connectivity, the upper half of the 128×128 matrix is chosen in order to minimise the input parameter size, producing 8,128-dimensional data. After eliminating 28 components derived from irrelevant or reference electrodes, a 90×90 matrix is produced, which can be used as an input for a single-channel brain-computer interface image.
Result: At the functional level, a spiking neural network is constructed to classify individuals with depression and healthy individuals, achieving an accuracy exceeding 97.5 %.
Comparison With Existing Methods: Compared to deep convolutional methods, the spiking method reduces energy consumption.
Conclusion: At the structural level, complex networks are utilized to establish spatial topology of brain connections and analyse their graph features, identifying potential abnormal brain functional connections in individuals with depression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2024.110203 | DOI Listing |
Alzheimers Dement
December 2024
University of Washington, Seattle, WA, USA.
Background: A multitude of high-quality imaging modalities exist that provide structural data at unprecedented levels of detail. Tissue ultrastructure greatly influences the rate of transport of proteins and other molecules that contribute to neurodegeneration. However, our ability to model flow and diffusion processes in the brain lags behind the quality of the neuroimaging data.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.
Steady-State Visually Evoked Potential (SSVEP) signals can be decoded by either a traditional machine learning algorithm or a deep learning network. Combining the two methods is expected to enhance the performance of an SSVEP-based brain-computer interface (BCI) by exploiting their advantages. However, an efficient strategy for integrating the two methods has not yet been established.
View Article and Find Full Text PDFAnnu Rev Biomed Eng
January 2025
Department of Neurological Surgery, University of California, Davis, California, USA; email:
People who have lost the ability to speak due to neurological injuries would greatly benefit from assistive technology that provides a fast, intuitive, and naturalistic means of communication. This need can be met with brain-computer interfaces (BCIs): medical devices that bypass injured parts of the nervous system and directly transform neural activity into outputs such as text or sound. BCIs for restoring movement and typing have progressed rapidly in recent clinical trials; speech BCIs are the next frontier.
View Article and Find Full Text PDFNeural Netw
December 2024
The school of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China. Electronic address:
Emotion recognition via electroencephalogram (EEG) signals holds significant promise across various domains, including the detection of emotions in patients with consciousness disorders, assisting in the diagnosis of depression, and assessing cognitive load. This process is critically important in the development and research of brain-computer interfaces, where precise and efficient recognition of emotions is paramount. In this work, we introduce a novel approach for emotion recognition employing multi-scale EEG features, denominated as the Dynamic Spatial-Spectral-Temporal Network (DSSTNet).
View Article and Find Full Text PDFBMC Bioinformatics
December 2024
College of Computer and Information Engineering/College of Artificial Intelligence, Nanjing Tech University, Nanjing, 210093, China.
Background: The collection of substantial amounts of electroencephalogram (EEG) data is typically time-consuming and labor-intensive, which adversely impacts the development of decoding models with strong generalizability, particularly when the available data is limited. Utilizing sufficient EEG data from other subjects to aid in modeling the target subject presents a potential solution, commonly referred to as domain adaptation. Most current domain adaptation techniques for EEG decoding primarily focus on learning shared feature representations through domain alignment strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!