There are many factors to consider when selecting a container closure system for parenteral drug products to maintain their quality, efficacy, and safety. One aspect to consider for products stored in glass vials is the glass type. Although the glass vials in which most parenteral products are stored are classified as Type I by the United States Pharmacopoeia, Chapter <660>, not all glass vials that meet the glass performance characteristics of Type I are equivalent. In the study presented here, Type I glass vials from three suppliers of three different Type I glass vials (standard, delamination control, and coated) were investigated to evaluate the impact that each Type I glass vial had on the stability of a drug product under development. To evaluate this impact, a three-phase study was conducted in which the compatibility between the drug product and each vial was assessed through the measurement of the critical quality attributes of the product, extractable and leachable inorganic elements were analyzed for each vial, and finally a stability study under accelerated conditions was conducted for the drug product in the most compatible vial based on the aforementioned experiments. Results from this study demonstrated that there are, in fact, significant differences in glass vials regardless of their classification as Type I. In the study conducted here, delamination control Type I glass vials were found to be superior to both Standard Type I and coated Type I vials for the drug product under investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2024.06.008 | DOI Listing |
Int J Pharm
January 2025
Drug Product and Device Technologies, BioMarin Pharmaceutical, Inc, Novato, CA 94949, USA.
Glass delamination is a gradual process that may not become apparent until late in storage. Over the past three decades, it has been a leading cause of drug product recalls due to glass particulate contamination. The appearance of glass particles in the solution marks the final stage of glass delamination.
View Article and Find Full Text PDFPharm Res
January 2025
BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA.
Background: High concentration protein formulation (HCPF) development needs to balance protein stability attributes such as conformational/colloidal stability, chemical stability, and solution properties such as viscosity and osmolality.
Methodology: A three-phase design is established in this work. In Phase 1, conformational and colloidal stability are measured by 384-well-based high-throughput (HT) biophysical screening while viscosity reduction screening is performed with HT viscosity screening.
Sci Rep
January 2025
Van der Waals-Zeeman institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
The freezing of water is one of the major causes of mechanical damage in materials during wintertime; surprisingly this happens even in situations where water only partially saturates the material so that the ice has room to grow. Here we perform freezing experiments in cylindrical glass vials of various sizes and wettability properties, using a dye that exclusively colors the liquid phase; this allows precise observation of the freezing front. The visualization reveals that damage occurs in partially water-saturated media when a closed liquid inclusion forms within the ice due to the freezing of the air/water meniscus.
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, 81377 Munich, Germany. Electronic address:
The frozen storage of biopharmaceuticals brings new challenges to the primary packaging material. Due to an increasing demand and the downsides of standard type I glass vials, such as vial breakage, novel vial types for special applications of parenteral drug products have been introduced to the market in the past years. Mechanical stresses due to dimensional changes experienced during freezing and thawing could change the material properties, hence affecting the interaction with the drug product stored in the vial or functionality such as overall integrity.
View Article and Find Full Text PDFMolecules
January 2025
School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China.
This study systematically investigated the effect of organic solvent addition on the detection signal intensity of 15 organic pesticides in water using ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS). The analysis of chromatographic peak area ratios in ultrapure water (UPW) versus 30% methanol (MeOH)-UPW showed that the adsorption effects (AEs, mainly from injection vials with weaker polarity) were the main factor influencing the detection intensity of the organic pesticides. The AEs varied with pesticide type and concentration, especially for those with high logK values and longer retention times, such as malathion, triadimefon, prometryn, S-metolachlor, diazinon, and profenofos.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!