A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Engineering a wolf spider A-family toxin towards increased antimicrobial activity but low toxicity. | LitMetric

Engineering a wolf spider A-family toxin towards increased antimicrobial activity but low toxicity.

Toxicon

Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany.

Published: August 2024

AI Article Synopsis

  • Spider-derived peptides, known as antimicrobial peptides (AMPs), have shown potential for therapeutic use due to their insecticidal, antimicrobial, and cytolytic properties found in RTA-clade spider venoms.
  • A study identified 52 AMPs in the Chinese wolf spider, particularly noting their antibacterial effects, and explored enhancing their activity through bioengineering.
  • The research generated modified peptides that increased antimicrobial effectiveness while maintaining low toxicity, confirming their potential as safer therapeutic agents against infections.

Article Abstract

Spider-derived peptides with insecticidal, antimicrobial and/or cytolytic activities, also known as spider venom antimicrobial peptides (AMPs), can be found in the venoms of RTA-clade spiders. They show translational potential as therapeutic leads. A set of 52 AMPs has been described in the Chinese wolf spider (Lycosa shansia), and many have been shown to exhibit antibacterial effects. Here we explored the potential to enhance their antimicrobial activity using bioengineering. We generated a panel of artificial derivatives of an A-family peptide and screened their activity against selected microbial pathogens, vertebrate cells and insects. In several cases, we increased the antimicrobial activity of the derivatives while retaining the low cytotoxicity of the parental molecule. Furthermore, we injected the peptides into adult Drosophila suzukii and found no evidence of insecticidal effects, confirming the low levels of toxicity. Our data therefore suggest that spider venom linear peptides naturally defend the venom gland against microbial colonization and can be modified into more potent antimicrobial agents that could help to battle infectious diseases in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2024.107810DOI Listing

Publication Analysis

Top Keywords

antimicrobial activity
12
wolf spider
8
increased antimicrobial
8
spider venom
8
antimicrobial
6
engineering wolf
4
spider
4
spider a-family
4
a-family toxin
4
toxin increased
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!