Long-term studies have confirmed a causal relationship between the development of neurodegenerative processes and vitamin B (thiamine) deficiency. However, the biochemical mechanisms underlying the high neurotropic activity of thiamine are not fully understood. At the same time, there is increasing evidence that vitamin B, in addition to its coenzyme functions, may have non-coenzyme activities that are particularly important for neurons. To elucidate which effects of vitamin B in neurons are due to its coenzyme function and which are due to its non-coenzyme activity, we conducted a comparative study of the effects of thiamine and its derivative, 3-decyloxycarbonylmethyl-5-(2-hydroxyethyl)-4-methyl-1,3-thiazolium chloride (DMHT), on selected processes in synaptosomes. The ability of DMHT to effectively compete with thiamine for binding to thiamine-binding sites on the plasma membrane of synaptosomes and to participate as a substrate in the thiamine pyrophosphokinase reaction was demonstrated. In experiments with rat brain synaptosomes, unidirectional effects of DMHT and thiamine on the activity of the pyruvate dehydrogenase complex (PDC) and on the incorporation of radiolabeled [2-C]pyruvate into acetylcholine were demonstrated. The observed effects of thiamine and DMHT on the modulation of acetylcholine synthesis can be explained by suggesting that both compounds, which interact in cells with enzymes of thiamine metabolism, are phosphorylated and exert an inhibitory/activating effect (concentration-dependent) on PDC activity by affecting the regulatory enzymes of the complex. Such effects were not observed in the presence of structural analogues of thiamine and DMHT without a 2-hydroxyethyl substituent at position 5 of the thiazolium cycle. The effect of DMHT on the plasma membrane Ca-ATPase was similar to that of thiamine. At the same time, DMHT showed high cytostatic activity against neuroblastoma cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2024.105791DOI Listing

Publication Analysis

Top Keywords

thiamine
10
effects vitamin
8
effects thiamine
8
plasma membrane
8
thiamine dmht
8
dmht
7
effects
6
activity
5
thiazolium salt
4
salt mimics
4

Similar Publications

Wernicke's encephalopathy, Central Pontine Myelinolysis and Supraventricular Tachycardia in a Case of Hyperemesis Gravidarum.

Mymensingh Med J

January 2025

Dr Muhammad Rezeul Huq, Classified Specialist, Department of Neurology, Combined Military Hospital, Dhaka, Bangladesh; E-mail:

Wernicke's encephalopathy is a potentially lethal complication of thiamine deficiency which mainly occurs in chronic alcoholic patients. It may occur in other conditions like hyperemesis gravidarum too. Pregnancy may also be complicated with other neurological and cardiac complications.

View Article and Find Full Text PDF

Substrate transport and drug interaction of human thiamine transporters SLC19A2/A3.

Nat Commun

December 2024

ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China.

Thiamine and pyridoxine are essential B vitamins that serve as enzymatic cofactors in energy metabolism, protein and nucleic acid biosynthesis, and neurotransmitter production. In humans, thiamine transporters SLC19A2 and SLC19A3 primarily regulate cellular uptake of both vitamins. Genetic mutations in these transporters, which cause thiamine and pyridoxine deficiency, have been implicated in severe neurometabolic diseases.

View Article and Find Full Text PDF

Thiamine responsive megaloblastic anemia (TRMA), also known as Roger's syndrome, is an exceptionally rare autosomal recessive disorder stemming from mutations in the SLC19A2 gene responsible for encoding a thiamine carrier protein. This syndrome manifests as the classic triad of megaloblastic anemia, sensorineural hearing loss, and diabetes mellitus. Here, we present the case of a one-and-a-half-year-old male infant born to non-consanguineous parents in India, a region where TRMA cases are seldom reported.

View Article and Find Full Text PDF

Kawasaki disease (KD) has emerged as the leading cause of acquired heart disease in children, primarily due to the absence of highly sensitive and specific biomarkers for early and accurate diagnosis. To address this issue, a simple and comprehensive targeted metabolomics method employing ultra high-performance liquid chromatography coupled with Q-TRAP mass spectrometry has been developed to identify new metabolite biomarkers for KD. This method enables the simultaneous quantification of 276 metabolites, covering 60 metabolic pathways, with a particular emphasis on metabolites relevant to KD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!