The androgen receptor signaling inhibitor (ARSI) enzalutamide (Enz) has shown critical efficacy in the treatment of advanced prostate cancer (PCa). However, the development of drug resistance is a significant factor contributing to mortality in PCa patients. We aimed to explore the key mechanisms of Enz-resistance. Through analysis of GEO databases, we identified SLC4A4 as a novel driver in Enz resistance. Long-term Enz treatment leads to the up-regulation of SLC4A4, which in turn mediates P53 lactylation via the NF-κB/STAT3/SLC4A4 axis, ultimately leading to the development of Enz resistance and progression of PCa. SLC4A4 knockdown overcomes Enz resistance both in vitro and in vivo. Hence, our results suggest that targeting SLC4A4 could be a promising therapeutic strategy for Enz resistance. STATEMENT OF SIGNIFICANCE: SLC4A4 is a novel driver of enzalutamide resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2024.217070 | DOI Listing |
Am J Cancer Res
December 2024
Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM) Monroe, LA 71203, USA.
Prostate cancer (PCa) is the second leading cause of cancer-related deaths among American men. The development of metastatic castration resistant PCa (mCRPC) is the current clinical challenge. Antiandrogens such as Enzalutamide (ENZ) are commonly used for CRPC treatment.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA. Electronic address:
Androgen receptor (AR) splice variants, of which ARv7 is the most common, are increased in castration-resistant prostate cancer, but the extent to which they drive AR activity is unclear. We generated a subline of VCaP cells (VCaP16) that is resistant to the AR inhibitor enzalutamide (ENZ). AR activity in VCaP16 is driven by ARv7, independently of full-length AR (ARfl), and its cistrome and transcriptome mirror those of ARfl in VCaP cells.
View Article and Find Full Text PDFProstate Cancer Prostatic Dis
December 2024
Advent Health Urology Denver, 850 Harvard Avenue, Denver, CO, 80210, USA.
Background: Androgen receptor pathway inhibitors (apalutamide [APA], enzalutamide [ENZ], abiraterone acetate plus prednisone [AAP]) combined with androgen-deprivation therapy (ADT) are effective life-prolonging treatment options for metastatic hormone-sensitive prostate cancer (mHSPC). We evaluated the impact of upfront therapy for mHSPC on outcomes in real-world clinical practice in the United States.
Methods: This retrospective, observational cohort study used electronic healthcare records from the ConcertAI RWD 360 Prostate Cancer Dataset.
J Nanobiotechnology
December 2024
Department of Urology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, Guangdong, China.
Cancer cells acquire the ability to reprogram their phenotype in response to targeted therapies, yet the transition from dormancy to proliferation in drug-resistant cancers remains poorly understood. In prostate cancer, we utilized high-plasticity mouse models and enzalutamide-resistant (ENZ-R) cellular models to elucidate NR2F1 as a key factor in lineage transition and ENZ resistance. Depletion of NR2F1 drives ENZ-R cells into a relative dormancy state, characterized by reduced proliferation and heightened drug resistance, while NR2F1 overexpression yields contrasting outcomes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal. Electronic address:
Enzalutamide (ENZ) has emerged as a major treatment advance in castration-resistant prostate cancer (CRPC) patients; however the development of resistance remains a key challenge. The extracellular vesicles (VEs)-derived miRNAs play crucial roles tumor microenvironment cell communication, thereby influencing resistance mechanisms. Considering the urgent need for molecular biomarkers to monitor ENZ response and predict resistance, we intend to identify an EV-derived miRNA profile associated with ENZ resistance using an innovative 3D-spheroid in vitro model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!