A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative assessment of brain injury and concussion induced by an unintentional soccer ball impact. | LitMetric

Quantitative assessment of brain injury and concussion induced by an unintentional soccer ball impact.

Injury

School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510640, China.

Published: August 2024

AI Article Synopsis

  • Soccer balls can hit players' heads hard enough to cause serious injuries like concussions, so it's important to check for these injuries quickly during games.
  • * Scientists studied how fast a soccer ball needs to be going to hurt different parts of the head and found that some spots are more sensitive than others.
  • * They discovered that when a ball hits the back of the head (occiput), it’s more likely to cause brain injuries, and specific speeds can cause problems for the brain, especially in areas that help with thinking and memory.

Article Abstract

Background: Accidental impact on a player's head by a powerful soccer ball may lead to brain injuries and concussions during games. It is crucial to assess these injuries promptly and accurately on the field. However, it is challenging for referees, coaches, and even players themselves to accurately recognize potential injuries and concussions following such impacts. Therefore, it is necessary to establish a list of minimum ball velocity thresholds that can result in concussions at different impact locations on the head. Additionally, it is important to identify the affected brain regions responsible for impairments in brain function and potential clinical symptoms.

Methods: By using a full human finite element model, dynamic responses and brain injuries caused by unintentional soccer ball impacts on six distinct head locations (forehead, tempus, crown, occiput, face, and jaw) at varying ball velocities (10, 15, 20, 25, 30, 35, 40, and 60 m/s) were simulated and investigated. Intracranial pressure, Von-Mises stress, and first principal strain were analyzed, the ball velocity thresholds resulting in concussions at different impact locations were evaluated, and the damage evolution patterns in the brain tissue were analyzed.

Results: The impact on the occiput is most susceptible to induce brain injuries compared to all other impact locations. For a conservative assessment, the risk of concussion is present once the soccer ball reaches 17.2 m/s in a frontal impact, 16.6 m/s in a parietal impact, 14.0 m/s in an occipital impact, 17.8 m/s in a temporal impact, 18.5 m/s in a facial impact or 19.2 m/s in a mandibular impact. The brain exhibits the most significant dynamic responses during the initial 10-20 ms, and the damaged regions are primarily concentrated in the medial temporal lobe and the corpus callosum, potentially causing impairments in brain functions.

Conclusions: This work offers a framework for quantitatively assessing brain injuries and concussions induced by an unintentional soccer ball impact. Determining the ball velocity thresholds at various impact locations provides a benchmark for evaluating the risks of concussion. The examination of brain tissue damage evolution introduces a novel approach to linking biomechanical responses with possible clinical symptoms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.injury.2024.111658DOI Listing

Publication Analysis

Top Keywords

soccer ball
20
brain injuries
16
impact locations
16
impact
14
unintentional soccer
12
injuries concussions
12
ball velocity
12
velocity thresholds
12
brain
11
ball
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!