Stroke is a cerebrovascular disease that impairs blood supply to localized brain tissue regions due to various causes. This leads to ischemic and hypoxic lesions, necrosis of the brain tissue, and a variety of functional disorders. Abnormal cortical activation and functional connectivity occur in the brain after a stroke, but the activation patterns and functional reorganization are not well understood. Rehabilitation interventions can enhance functional recovery in stroke patients. However, clinicians require objective measures to support their practice, as outcome measures for functional recovery are based on scale scores. Furthermore, the most effective rehabilitation measures for treating patients are yet to be investigated. Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging method that detects changes in cerebral hemodynamics during task performance. It is widely used in neurological research and clinical practice due to its safety, portability, high motion tolerance, and low cost. This paper briefly introduces the imaging principle and the advantages and disadvantages of fNIRS to summarize the application of fNIRS in post-stroke rehabilitation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188690PMC
http://dx.doi.org/10.12659/MSM.943785DOI Listing

Publication Analysis

Top Keywords

functional near-infrared
8
near-infrared spectroscopy
8
spectroscopy fnirs
8
brain tissue
8
functional recovery
8
functional
6
applications functional
4
fnirs
4
fnirs neuroimaging
4
rehabilitation
4

Similar Publications

Article Synopsis
  • Depression treatment effectiveness differs greatly among individuals, highlighting the need for objective biomarkers that can accurately predict therapy outcomes to improve treatment efficiency.
  • This study used functional near-infrared spectroscopy (fNIRS) combined with clinical assessments to explore whether machine learning techniques could forecast treatment responses in patients with major depressive disorder (MDD).
  • Findings revealed that changes in total hemoglobin levels in a specific brain region (dlPFC) correlated significantly with treatment response, and the fNIRS-only model demonstrated better predictive accuracy compared to a model that also included clinical data.
View Article and Find Full Text PDF

Machine learning assisted multi-signal nanozyme sensor array for the antioxidant phenolic compounds intelligent recognition.

Food Chem

January 2025

Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China. Electronic address:

Identifying antioxidant phenolic compounds (APs) in food plays a crucial role in understanding their biological functions and associated health benefits. Here, a bifunctional Cu-1,3,5-benzenetricarboxylic acid (Cu-BTC) nanozyme was successfully prepared. Due to the excellent laccase-like behavior of Cu-BTC, it can catalyze the oxidation of various APs to produce colored quinone imines.

View Article and Find Full Text PDF

Phenomic selection based on parental spectra can be used to predict GCA and SCA in a sparse factorial design. Prediction approaches such as genomic selection can be game changers in hybrid breeding. They allow predicting the genetic values of hybrids without the need for their physical production.

View Article and Find Full Text PDF

Characterization of Hazelnut Trees in Open Field Through High-Resolution UAV-Based Imagery and Vegetation Indices.

Sensors (Basel)

January 2025

Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.

The increasing demand for hazelnut kernels is favoring an upsurge in hazelnut cultivation worldwide, but ongoing climate change threatens this crop, affecting yield decreases and subject to uncontrolled pathogen and parasite attacks. Technical advances in precision agriculture are expected to support farmers to more efficiently control the physio-pathological status of crops. Here, we report a straightforward approach to monitoring hazelnut trees in an open field, using aerial multispectral pictures taken by drones.

View Article and Find Full Text PDF

Perovskite solar cell (PSC) technology holds great promise with continuously improving power conversion efficiency; however, the use of metal electrodes hinders its commercialization and the development of tandem designs. Although single-walled carbon nanotubes (SWCNTs), as one-dimensional materials, have the potential to replace metal electrodes in PSCs, their poor conductivity still limits their application. In this study, the near-infrared (NIR)-absorbing anionic heptamethine cyanine dye-doped SWCNTs functioned in a dual role as an efficient charge-selective layer and electrode in PSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!