Development of optimization method for truss structure by quantum annealing.

Sci Rep

Keio Quantum Computing Center, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.

Published: June 2024

In this study, we developed a new method of topology optimization for truss structures by quantum annealing. To perform quantum annealing analysis with real variables, representation of real numbers as a sum of random number combinations is employed. The nodal displacement is expressed with binary variables. The Hamiltonian H is formulated on the basis of the elastic strain energy and position energy of a truss structure. It is confirmed that truss deformation analysis is possible by quantum annealing. For the analysis of the optimization method for the truss structure, the cross-sectional area of the truss is expressed with binary variables. The iterative calculation for the changes in displacement and cross-sectional area leads to the optimal structure under the prescribed boundary conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180109PMC
http://dx.doi.org/10.1038/s41598-024-64588-2DOI Listing

Publication Analysis

Top Keywords

quantum annealing
16
truss structure
12
optimization method
8
method truss
8
annealing analysis
8
expressed binary
8
binary variables
8
cross-sectional area
8
truss
6
development optimization
4

Similar Publications

Two-dimensional halide perovskites are attracting attention due to their structural diversity, improved stability, and enhanced quantum efficiency compared to their three-dimensional counterparts. In particular, Dion-Jacobson (DJ) phase perovskites exhibit superior structural stability compared to Ruddlesden-Popper phase perovskites. The inherent quantum well structure of layered perovskites leads to highly anisotropic charge transport and optical properties.

View Article and Find Full Text PDF

Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.

View Article and Find Full Text PDF

Quantum emitters in solid-state materials are highly promising building blocks for quantum information processing and communication science. Recently, single-photon emission from van der Waals materials has been reported in transition metal dichalcogenides and hexagonal boron nitride, exhibiting the potential to realize photonic quantum technologies in two-dimensional materials. Here, we report the generation of room temperature single-photon emission from exfoliated and thermally annealed single crystals of van der Waals α-MoO.

View Article and Find Full Text PDF

Near-ultraviolet (NUV)-pumped white light-emitting-diodes (WLEDs) often suffer from poor color rendering in the 480-520 nm range, highlighting the need for an efficient cyan phosphor with strong absorption at 370-420 nm. This study presents the successful synthesis of cyan-emitting ZnS/ZnO phosphors using a high-energy planetary ball milling method followed by post-annealing. The fabricated phosphors, with particle sizes ranging from 1 to 3 μm, exhibit strong cyan emission with CIE chromaticity coordinates of (0.

View Article and Find Full Text PDF

Quantum Computing in Community Detection for Anti-Fraud Applications.

Entropy (Basel)

November 2024

Beijing QBoson Quantum Technology Co., Ltd., Beijing 100015, China.

Fraud detection within transaction data is crucial for maintaining financial security, especially in the era of big data. This paper introduces a novel fraud detection method that utilizes quantum computing to implement community detection in transaction networks. We model transaction data as an undirected graph, where nodes represent accounts and edges indicate transactions between them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!