AI Article Synopsis

  • Wasteosomes (or corpora amylacea) are polyglucosan bodies linked to aging and neurodegenerative diseases, potentially serving a brain cleaning function.
  • A study examined wasteosomes in 124 post-mortem FTLD patients across three proteinopathies (tau, TDP, and FUS), finding a higher accumulation in FTLD patients compared to controls, particularly in FTLD-FUS cases.
  • Results indicated that while wasteosomes increased with disease duration in FTLD-TDP, they did not show this trend in FTLD-tau and FTLD-FUS, suggesting varying roles in disease progression among the proteinopathies.

Article Abstract

Wasteosomes (or corpora amylacea) are polyglucosan bodies that appear in the human brain with aging and in some neurodegenerative diseases, and have been suggested to have a potential role in a nervous system cleaning mechanism. Despite previous studies in several neurodegenerative disorders, their status in frontotemporal lobar degeneration (FTLD) remains unexplored. Our study aims to characterize wasteosomes in the three primary FTLD proteinopathies, assessing frequency, distribution, protein detection, and association with aging or disease duration. Wasteosome scores were obtained in various brain regions from 124 post-mortem diagnosed sporadic FTLD patients, including 75 participants with tau (FTLD-tau), 42 with TAR DNA-binding protein 43 (FTLD-TDP), and 7 with Fused in Sarcoma (FTLD-FUS) proteinopathies, along with 29 control subjects. The wasteosome amount in each brain region for the different FLTD patients was assessed with a permutation test with age at death and sex as covariables, and multiple regressions explored associations with age at death and disease duration. Double immunofluorescence studies examined altered proteins linked to FTLD in wasteosomes. FTLD patients showed a higher accumulation of wasteosomes than control subjects, especially those with FTLD-FUS. Unlike FTLD-TDP and control subjects, wasteosome accumulation did not increase with age in FTLD-tau and FTLD-FUS. Cases with shorter disease duration in FTLD-tau and FTLD-FUS seemed to exhibit higher wasteosome quantities, whereas FTLD-TDP appeared to show an increase with disease progression. Immunofluorescence studies revealed the presence of tau and phosphorylated-TDP-43 in the periphery of isolated wasteosomes in some patients with FTLD-tau and FTLD-TDP, respectively. Central inclusions of FUS were observed in a higher number of wasteosomes in FTLD-FUS patients. These findings suggest a role of wasteosomes in FTLD, especially in the more aggressive forms of FLTD-FUS. Detecting these proteins, particularly FUS, in wasteosomes from cerebrospinal fluid could be a potential biomarker for FTLD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11179228PMC
http://dx.doi.org/10.1186/s40478-024-01812-0DOI Listing

Publication Analysis

Top Keywords

disease duration
12
control subjects
12
corpora amylacea
8
frontotemporal lobar
8
lobar degeneration
8
ftld patients
8
age death
8
immunofluorescence studies
8
ftld-tau ftld-fus
8
ftld
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!