Background: Cystatin F is a secreted lysosomal cysteine protease inhibitor that has been implicated in affecting the severity of demyelination and enhancing remyelination in pre-clinical models of immune-mediated demyelination. How cystatin F impacts neurologic disease severity following viral infection of the central nervous system (CNS) has not been well characterized and was the focus of this study. We used cystatin F null-mutant mice (Cst7-/-) with a well-established model of murine coronavirus-induced neurologic disease to evaluate the contributions of cystatin F in host defense, demyelination and remyelination.
Methods: Wildtype controls and Cst7-/- mice were intracranially (i.c.) infected with a sublethal dose of the neurotropic JHM strain of mouse hepatitis virus (JHMV), with disease progression and survival monitored daily. Viral plaque assays and qPCR were used to assess viral levels in CNS. Immune cell infiltration into the CNS and immune cell activation were determined by flow cytometry and 10X genomics chromium 3' single cell RNA sequencing (scRNA-seq). Spinal cord demyelination was determined by luxol fast blue (LFB) and Hematoxylin/Eosin (H&E) staining and axonal damage assessed by immunohistochemical staining for SMI-32. Remyelination was evaluated by electron microscopy (EM) and calculation of g-ratios.
Results: JHMV-infected Cst7-/- mice were able to control viral replication within the CNS, indicating that cystatin F is not essential for an effective Th1 anti-viral immune response. Infiltration of T cells into the spinal cords of JHMV-infected Cst7-/- mice was increased compared to infected controls, and this correlated with increased axonal damage and demyelination associated with impaired remyelination. Single-cell RNA-seq of CD45 + cells enriched from spinal cords of infected Cst7-/- and control mice revealed enhanced expression of transcripts encoding T cell chemoattractants, Cxcl9 and Cxcl10, combined with elevated expression of interferon-g (Ifng) and perforin (Prf1) transcripts in CD8 + T cells from Cst7-/- mice compared to controls.
Conclusions: Cystatin F is not required for immune-mediated control of JHMV replication within the CNS. However, JHMV-infected Cst7-/- mice exhibited more severe clinical disease associated with increased demyelination and impaired remyelination. The increase in disease severity was associated with elevated expression of T cell chemoattractant chemokines, concurrent with increased neuroinflammation. These findings support the idea that cystatin F influences expression of proinflammatory gene expression impacting neuroinflammation, T cell activation and/or glia cell responses ultimately impacting neuroinflammation and neurologic disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11179388 | PMC |
http://dx.doi.org/10.1186/s12974-024-03153-0 | DOI Listing |
Unlabelled: The function of microglia during progression of Alzheimer's disease (AD) can be investigated using mouse models that enable genetic manipulation of microglial subpopulations in a temporal manner. We developed a mouse strain that expresses destabilized-domain Cre recombinase (DD-Cre) from the locus ( ) and tested this in 5xFAD amyloidogenic, Ai14 tdTomato cre-reporter line mice. Dietary administration of trimethoprim to induce DD-Cre activity produces long-term labeling in disease associated microglia (DAM) without evidence of leakiness, with tdTomato-expression restricted to cells surrounding plaques.
View Article and Find Full Text PDFInt J Mol Sci
August 2024
Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal.
Alzheimer's disease (AD), the leading cause of dementia, is a multifactorial disease influenced by aging, genetics, and environmental factors. miRNAs are crucial regulators of gene expression and play significant roles in AD onset and progression. This exploratory study analyzed the expression levels of 28 genes and 5 miRNAs (miR-124-3p, miR-125b-5p, miR-21-5p, miR-146a-5p, and miR-155-5p) related to AD pathology and neuroimmune responses using RT-qPCR.
View Article and Find Full Text PDFJ Neuroinflammation
June 2024
Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA.
Background: Cystatin F is a secreted lysosomal cysteine protease inhibitor that has been implicated in affecting the severity of demyelination and enhancing remyelination in pre-clinical models of immune-mediated demyelination. How cystatin F impacts neurologic disease severity following viral infection of the central nervous system (CNS) has not been well characterized and was the focus of this study. We used cystatin F null-mutant mice (Cst7-/-) with a well-established model of murine coronavirus-induced neurologic disease to evaluate the contributions of cystatin F in host defense, demyelination and remyelination.
View Article and Find Full Text PDFMol Biotechnol
April 2024
School of Medicine, South China University of Technology, Guangzhou, 510006, China.
Acute respiratory distress syndrome (ARDS), a progressive status of acute lung injury (ALI), is primarily caused by an immune-mediated inflammatory disorder, which can be an acute pulmonary complication of rheumatoid arthritis (RA). As a chronic inflammatory disease regulated by the immune system, RA is closely associated with the occurrence and progression of respiratory diseases. However, it remains elusive whether there are shared genes between the molecular mechanisms underlying RA and ARDS.
View Article and Find Full Text PDFFront Pharmacol
March 2024
Department of Physiology, School of Basic Medicine, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Key Laboratory of Cell Physiology, Shanxi Medical University, Taiyuan, Shanxi, China.
Background: Cognitive deficits and behavioral disorders such as anxiety and depression are common manifestations of Alzheimer's disease (AD). Our previous work demonstrated that Trichostatin A (TSA) could alleviate neuroinflammatory plaques and improve cognitive disorders. AD, anxiety, and depression are all associated with microglial inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!