Resistance to inhibitors of cholinesterases (ric-8 proteins) are involved in modulating G-protein function, but little is known of their potential physiological importance in the heart. In the present study, we assessed the role of resistance to inhibitors of cholinesterase 8b (Ric-8b) in determining cardiac contractile function. We developed a murine model in which it was possible to conditionally delete ric-8b in cardiac tissue in the adult animal after the addition of tamoxifen. Deletion of ric-8b led to severely reduced contractility as measured using echocardiography days after administration of tamoxifen. Histological analysis of the ventricular tissue showed highly variable myocyte size, prominent fibrosis, and an increase in cellular apoptosis. RNA sequencing revealed transcriptional remodeling in response to cardiac ric-8b deletion involving the extracellular matrix and inflammation. Phosphoproteomic analysis revealed substantial downregulation of phosphopeptides related to myosin light chain 2. At the cellular level, the deletion of ric-8b led to loss of activation of the L-type calcium channel through the β-adrenergic pathways. Using fluorescence resonance energy transfer-based assays, we showed ric-8b protein selectively interacts with the stimulatory G-protein, Gαs. We explored if deletion of Gnas (the gene encoding Gα) in cardiac tissue using a similar approach in the mouse led to an equivalent phenotype. The conditional deletion of the Gα gene in the ventricle led to comparable effects on contractile function and cardiac histology. We conclude that ric-8b is essential to preserve cardiac contractile function likely through an interaction with the stimulatory G-protein and downstream phosphorylation of myosin light chain 2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11277413 | PMC |
http://dx.doi.org/10.1016/j.jbc.2024.107470 | DOI Listing |
Dev Cell
December 2024
Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Electronic address:
Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the gene transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing.
View Article and Find Full Text PDFBMC Musculoskelet Disord
December 2024
Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo, 651-2180, Japan.
Background: Exercise-induced hypoalgesia (EIH) is characterized by a reduction in pain perception and sensitivity across both exercising and non-exercising body parts during and after a single bout of exercise. EIH is mediated through central and peripheral mechanisms; however, the specific effect of muscle contraction alone on EIH remains unclear. Moreover, previous studies on electrical muscle stimulation (EMS) have primarily focused on local analgesic effects, often relying on subjective pain reports.
View Article and Find Full Text PDFPediatr Cardiol
December 2024
The Department of Ultrasound, Tianyou Hospital of Shanghai, No 528, Zhennan Road, Putuo District, Shanghai, 200331, China.
Persistent myocardial impairment proved by histopathologic studies universally existed in patients with Kawasaki disease (KD); however, the long-term effects on myocardial contractile reserve in KD patients, especially on patients without coronary artery lesions (CALs), is still unknown. The aim of this study was to investigate myocardial contractile reserve in KD patients during late convalescent stage by speckle-tracking adenosine triphosphate (AT) echocardiography. A total of 63 antecedent KD patients at least 4 years after the disease onset and 40 age- and gender-matched normal controls were prospectively enrolled.
View Article and Find Full Text PDFSci Data
December 2024
The University of North Carolina at Chapel Hill and North Carolina State University, Joint Department of Biomedical Engineering, Raleigh, 27695, USA.
The role of the human ankle joint in activities of daily living, including walking, maintaining balance, and participating in sports, is of paramount importance. Ankle joint dorsiflexion and plantarflexion functionalities mainly account for ground clearance and propulsion power generation during locomotion tasks, where those functionalities are driven by the contraction of ankle joint skeleton muscles. Studies of corresponding muscle contractility during ankle dynamic functions will facilitate us to better understand the joint torque/power generation mechanism, better diagnose potential muscular disorders on the ankle joint, or better develop wearable assistive/rehabilitative robotic devices that assist in community ambulation.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia.
Background: Data on the genetic factors contributing to inter-individual variability in muscle fiber size are limited. Recent research has demonstrated that mice lacking the Arkadia (RNF111) N-terminal-like PKA signaling regulator 2N (; also known as ) gene exhibit reduced muscle fiber size, contraction force, and exercise capacity, along with defects in calcium handling within fast-twitch muscle fibers. However, the role of the gene in human muscle physiology, and particularly in athletic populations, remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!