MYC2 is a class of bHLH family transcription factors and a major regulatory factor in the JA signaling pathway, and its molecular function in tobacco has not been reported. In this study, CRISPR/Cas9-mediated MYC2 gene NtMYC2a knockout mutants at tobacco was obtained and its agronomic traits, disease resistance, and chemical composition were identified. Comparing with the WT, the leaf width of the KO-NtMYC2a was narrowed, the nornicotine content and mecamylamine content increased significantly and the resistance to Ralstonia solanacearum significantly decreased. The transcriptome sequencing results showed that DEGs related to immunity, signal transduction and growth and development were enriched between KO-NtMYC2a and WT. NtJAR1 and NtCOI1 in KO-NtMYC2a were down-regulated to regulating the JA signaling pathway, result in a significant decrease in tobacco's resistance to R. solanacearum. Our research provides theoretical support for the functional research of MYC2 and the study of the mechanism of tobacco bacterial wilt resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2024.148622DOI Listing

Publication Analysis

Top Keywords

bacterial wilt
8
signaling pathway
8
resistance
5
crispr/cas9-mediated knockout
4
knockout ntmyc2a
4
ntmyc2a gene
4
gene involved
4
involved resistance
4
resistance bacterial
4
tobacco
4

Similar Publications

First Report of Bacterial Wilt of Ginger Caused by in the Continental United States.

Plant Dis

January 2025

University of Minnesota Twin Cities, Department of Plant Pathology, 1991 Upper Buford circle, 495 Borlaug Hall, Saint Paul, Minnesota, United States, 55108;

Ginger (Zingiber officinale) is an herbaceous perennial in the Zingiberaceae family grown primarily in tropical to subtropical biomes as a culinary spice, a traditional medicine, and a landscaping plant. While ginger grows at soil temperatures above 20°C, several farmers in the upper Midwestern US farmers grows short-season ginger in high tunnels. In 2023 and 2024, growers in southeastern Minnesota reported a new disease of ginger.

View Article and Find Full Text PDF

Epipremnum aureum, sometimes known as the Money Plant, is a popular houseplant known for its hearts-shaped leaves and durability. Commonly referred to as Golden Pothos or Devil's Ivy, it is also appreciated for its ornamental value and air cleaning ability. They say that these plants are attractive to many people owing to their tolerance to several conditions and easy care, therefore, it is no surprise that they are found in many households and workplaces.

View Article and Find Full Text PDF

For plant diseases to become established, plant pathogens require not only virulence factors and susceptible hosts, but also optimal environmental conditions. The accumulation of high soil salinity can have serious impacts on agro-biological ecosystems. However, the interactions between plant pathogens and salinity have not been fully characterized.

View Article and Find Full Text PDF

The Ralstonia solanacearum Species Complex (RSSC) is the most significant plant pathogen group with a wide host range. It is genetically related but displays distinct biological features, such as restrictive geography occurrence. The RSSC comprises three species: Ralstonia pseudosolanacearum (phylotype I and III), Ralstonia solanacearum (phylotype IIA and IIB), and Ralstonia syzygii (phylotype IV) (Fegan and Prior 2005).

View Article and Find Full Text PDF

Background: Fungal communities around plant roots play crucial roles in maintaining plant health. Nonetheless, the responses of fungal communities to bacterial wilt disease remain poorly understood. Here, the structure and function of fungal communities across four consecutive compartments (bulk soil, rhizosphere, rhizoplane and root endosphere) were investigated under the influence of bacterial wilt disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!