Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The intracellular developmental processes in plants, particularly concerning lignin polymer formation and biomass production are regulated by microRNAs (miRNAs). MiRNAs including miR397b are important for developing efficient and cost-effective biofuels. However, traditional methods of monitoring miRNA expression, like PCR, are time-consuming, require sample extraction, and lack spatial and temporal resolution, especially in real-world conditions. We present a novel approach using plasmonics nanosensing to monitor miRNA activity within living plant cells without sample extraction. Plasmonic biosensors using surface-enhanced Raman scattering (SERS) detection offer high sensitivity and precise molecular information. We used the Inverse Molecular Sentinel (iMS) biosensor on unique silver-coated gold nanorods (AuNR@Ag) with a high-aspect ratio to penetrate plant cell walls for detecting miR397b within intact living plant cells. MiR397b overexpression has shown promise in reducing lignin content. Thus, monitoring miR397b is essential for cost-effective biofuel generation. This study demonstrates the infiltration of nanorod iMS biosensors and detection of non-native miRNA 397b within plant cells for the first time. The investigation successfully demonstrates the localization of nanorod iMS biosensors through TEM and XRF-based elemental mapping for miRNA detection within plant cells of Nicotiana benthamiana. The study integrates shifted-excitation Raman difference spectroscopy (SERDS) to decrease background interference and enhance target signal extraction. In vivo SERDS testing confirms the dynamic detection of miR397b in Arabidopsis thaliana leaves after infiltration with iMS nanorods and miR397b target. This proof-of-concept study is an important stepping stone towards spatially resolved, intracellular miRNA mapping to monitor biomarkers and biological pathways for developing efficient renewable biofuel sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2024.116471 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!